Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADN có
O là trung điểm của AD
M là trung điểm của AN
Do đó: OM là đườg trung bình
=>OM=1/2ND
a: Xét tứ giác APMN có
góc APM=góc ANM=góc PAN=90 độ
nên APMN là hình chữ nhật
b: Xét tứ giác AMIQ có
N là trung điểm chung của AI và MQ
MQ vuông góc với AI
Do đó: AMIQ là hình thoi
a) Xét tứ giác AMIN, ta có:
\(\widehat{A}\) = 90o (△ABC vuông tại A)
\(\widehat{M}\) = 90o (IM ⊥ AB tại M)
\(\widehat{N}\) = 90o (IN ⊥ AC tại N)
Vậy tứ giác AMIN là hình chữ nhật.
b) *Xét △AIC, ta có:
IA = IC (AI là đường trung tuyến của △vABC)
⇒ △AIC cân tại A
Mà IN ⊥ AC (gt)
Nên IN là đường cao của △AIC
⇒ Đồng thời là đường trung tuyến
⇒ AN = NC
*Xét tứ giác ADCI, ta có:
IN = ND (gt)
AN = NC (cmt)
⇒ ADCI là hình bình hành
Mà AI = IC (cmt)
Vậy ADCI là hình thoi.
c) Gọi O là giao điểm BN và AI
Vì ADCI là hthoi (cmt)
⇒ AI // CD
⇒ \(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)
*Cm: △INP = △DNK (g.c.g)
⇒ IP = DK
*Vì ADCI là hthoi (cmt)
⇒ AI = DC
*Ta có:
AN = NC (cmt)
⇒ BN là đường trung tuyến
*Xét △ABC, ta có:
AI, BN là đường trung tuyến (gt,cmt)
Mà AI, BN cắt nhau tại B (theo cách vẽ)
Nên P là trọng tâm của △ABC
⇒ \(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)
Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)
a) Ta có D đối xứng vs a qua O (gt)
=> O là trung điểm của AD
Xét tứ giác ABCD có
BC cắt AD tại O
Mặt khác ta có O là trung điểm của BC
O là trung điểm của AD
nên tứ giác ABCD là hình bình hành
Xét hình bình hành ABCD có góc A = 900
=> Hình bình hànhABCD là hình chữ nhật
b, Xét tam giác AED có
AH = HE
AO = DO
=> HO là đường trung bình của tam giác
=> HO // ED
=> góc H bằng goc E vì đồng vị
Mà AH vuông góc vs BC
=> góc H = 90o
=> E bằng 90o
=> AE vuông góc vs ED
Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông
c,Đợi tí mình giải tiếp nhé
a) Ta có: A và D đối xứng với nhau qua O(gt)
⇒O là trung điểm của AD
Xét tứ giác ABDC có:
O là trung điểm của đường chéo BC(gt)
O là trung điểm của đường chéo AD(cmt)
mà \(BC\cap AD=\left\{O\right\}\)
Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90\)độ(ΔCAB cân tại A)
nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)* chứng minh ΔAED vuông
Kẻ EO
Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có
OH là cạnh chung
HA=HE(gt)
Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)
⇒OA=OE(hai cạnh tương ứng)
mà \(OA=\frac{AD}{2}\)(do O là trung điểm của AD)
nên \(OE=\frac{AD}{2}\)
Xét ΔAED có:
OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)
mà \(OE=\frac{AD}{2}\)(cmt)
nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
* chứng minh CE⊥BE
Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)
⇒\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)
mà AO=OE(cmt)
nên \(EO=\frac{BC}{2}\)
Xét ΔCEB có:
EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)
mà \(EO=\frac{BC}{2}\)(cmt)
nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
hay \(\widehat{CEB}=90\) độ
⇒CE⊥BE(đpcm)
a)Ta có AO=DO(gt), BO=CO(gt)
AD và BC cắt nhau tại trung điểm mỗi đường
=> ABCD là hcn
b) cm cái j z pn