K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

chj linh còn on 0 ra em bảo

có cái này hay lắm

11 tháng 8 2016

chú làm j đấy

12 tháng 8 2016

tập hợp mẹ Lê Nguyên Hạo

90;89;87;.......

 

19 tháng 8 2016

Pytago ra BC=35

Áp dụng hệ thức lượng ra:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{441}+\frac{1}{784}\Rightarrow AH=\frac{84}{5}\)

AB2=HB.BC→HB=441:35=12.6

HC=BC-HB=35-12.6=22.4

b, Tính theo ct thôi vì biết các cạnh rồi.

c,Theo t/c đường phân giác có

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\Rightarrow\frac{BD+CD}{CD}=\frac{3+4}{4}\Rightarrow\frac{BC}{CD}=\frac{7}{4}\Rightarrow CD=20;BD=15\)

 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

b: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

=>tan ADH=tan ABD=tan ABC=AC/AB=4/3

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC=HD*HC

25 tháng 9 2023

có ai giải được câu d bài này k?

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC^2=2\)

\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+HM^2\)

\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)

hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)

Xét ΔMAH vuông tại H có 

\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)

\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)

30 tháng 7 2021

Cho tam giác ABC vuông tại A

a) chứng minh tanB + cosB lớn hơn bằng 2

b) Khi sinB + cosB=căn 2 . Hãy tính góc B

c) H là trung điểm AB, đường thẳng qua H vuông góc với BC tại I và cắt tia AC tại K. Chứng minh tan C x tan BKC =2