Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Gọi O là giao điểm của BE và AF
Xét tam giác AHC có: M là TĐ của HC(gt) , E là TĐ của AC (gt)
\(\Rightarrow ME\)là đường trung bình của tam giác AHC
\(\Rightarrow ME//AH\left(tc\right)\)
Mà \(AH\perp BC\)
\(\Rightarrow ME\perp BC\)
\(\Rightarrow\widehat{BME}=90^0\)
Vì ABFE là hcn (cmt)
\(\Rightarrow BE\)cắt AF tại TĐ mỗi đường (tc) mà O là giao điểm của BE và AF(c.vẽ)
\(\Rightarrow O\)là TĐ của BE và AF
Xét tam giác \(BME\)vuông tại M có đường trung tuyến OM ứng với cạnh huyền BE
\(\Rightarrow OM=\frac{1}{2}BE\left(tc\right)\)
Mà \(BE=AF\)(tc hcn)
\(\Rightarrow OM=\frac{1}{2}AF\)
Xét tam giác AMF có trung tuyến OM ứng với cạnh AF và \(OM=\frac{1}{2}AF\left(cmt\right)\)
\(\Rightarrow\Delta AMF\)vuông tại M
\(\Rightarrow\widehat{FMA}=90^0\)
\(\Rightarrow AM\perp FM\)
A B C F M E
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
a: BC=10cm
AH=4,8cm
b: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: AH=EF=4,8cm