K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

28 tháng 11 2016

A B C H E D I

a) xét tam giác AHB và tam giác AHD ta có

AH=AH ( cạnh chung)

BH=HD(gt)

góc AHB= góc AHD (=90)

-> tam giác AHB= tam giác AHD (c-g-c)

b) ta có

DE vuông góc AC (gt)

AB vuông góc AC ( tam giác ABC vuông tại A)

-> DE//AB

ta có

AC>AB (gt)

-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)

c) Xét tam giác AHB và tam giác IHD ta có

AH=HI (gt)
BH=HD(gt)

góc AHB= góc IHD (=90)

-> tam giac AHB = tam giác IHD (c-g-c)

-> góc BAH= góc HID ( 2 góc tương ứng )

mà 2 góc nẳm ở vị trí sole trong 

nên BA//ID

ta có

BA//ID (cmt)

BA//DE (cm b)

-> ID trùng DE

-> I,E,D thẳng hàng

a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD

=>ΔCHA=ΔCHD

b: Xét tứ giác ABDE có

H la trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuôg góc AC

Xét ΔCAD có

CH,DE là đường cao

CH cắt DE tại E

=>E là trực tâm

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

7 tháng 1 2022

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng

22 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

c: Xét ΔCAD có

CH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔEAD có

EH là đường cao, là đường trung tuyến

Do đó: ΔEAD cân tại E

=>EA=ED

Xét ΔCAE và ΔCDE có

CA=CD

AE=DE

CE chung

Do đó; ΔCAE=ΔCDE

=>\(\widehat{EAC}=\widehat{EDC}\)

d: Xét ΔNEA và ΔMED có

\(\widehat{NEA}=\widehat{MED}\)

EA=ED

\(\widehat{NAE}=\widehat{MDE}\)

Do đó: ΔNEA=ΔMED

=>AN=MD

CN+NA=CA

CM+MD=CD

mà CA=CD và AN=MD

nên CN=CM

Xét ΔCAD có CN/NA=CM/MD

nên NM//AD

=>NM\(\perp\)BC

e: Xét tứ giác AIDK có

AI//DK

AI=DK

Do đó: AIDK là hình bình hành

=>AD cắt IK tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của KI

=>K,H,I thẳng hàng

3 tháng 12 2021

chịu m ko bt lm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm