Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D H P Q I
a. Xét tứ giác ADOH có:\(\widehat{ODA}=90^o;\widehat{DAH}=90^o;\widehat{OHA}=90^o\)
\(\Rightarrow\) ADOH là hình chữ nhật ( tứ giác có 3 góc vuông )
b. Ta có: P là điểm đối cứng của D qua O ⇒ O là trung điểm của DP(1)
Q là điểm đối xứng của H qua O ⇒ O là trung điểm của QH(2)
Ta có: \(AB\perp AC;QH\perp AC̸\) ⇒ AB//QH
Lại có: DB//QO;DB⊥DP⇒QH⊥DP(3)
Từ(1),(2),(3)⇒Tứ giác QDHP là hình thoi(Tứ giác có 2 đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường)
Phần a là HBA ~ ABC chứ nhỉ?
a, Xét tam giác HBA và tam giác ABC có:
góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)
góc B chung
\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)
b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)
Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)
Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)
Vì \(\Delta\)HAC ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)
c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA
\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)
BC2 = 152 + 202
BC2 = 625
BC = \(\sqrt{625}\) = 25 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt)
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)
hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)
Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)HAC (cmt)
\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)
\(\Rightarrow\) \(AH^2=16\cdot9=144\)
\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)
d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)
\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)
hay \(\frac{20-CD}{15}=\frac{CD}{25}\)
\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)
\(\Rightarrow\) 5(20 - CD) = 3CD
\(\Leftrightarrow\) 100 - 5CD = 3CD
\(\Leftrightarrow\) 3CD + 5CD = 100
\(\Leftrightarrow\) 8CD = 100
\(\Leftrightarrow\) CD = 12,5 (cm)
\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)
e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!
Xét tam giác CMD và tam giác CAB có:
góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)
góc C chung
\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)
\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)
Chúc bn học tốt!! (Dài quá :vvv)
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\) chung
Do đó: ΔHBA∼ΔABC(g-g)(1)
Xét ΔHAC và ΔABC có
\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\) chung
Do đó: ΔHAC∼ΔABC(g-g)(2)
Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)
b) Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)
hay \(AB^2=BC\cdot BH\)(đpcm)
Ta có: ΔHAC∼ΔABC(cmt)
⇒\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)
hay \(AC^2=BC\cdot HC\)(đpcm)
Ta có: ΔHBA∼ΔHAC(cmt)
⇒\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)
hay \(HA^2=HB\cdot HC\)(đpcm)
c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
⇔\(BC^2=15^2+20^2=625\)
hay \(BC=\sqrt{625}=25cm\)
Ta có: \(AB^2=BC\cdot BH\)(cmt)
⇔\(15^2=25\cdot BH\)
⇔\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)
Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)
⇔\(\frac{HA}{15}=\frac{20}{25}\)
⇔\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)
Vậy: BC=25cm; BH=9cm; HA=12cm
d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)
hay \(\frac{AD}{15}=\frac{CD}{25}\)
Ta có: AD+CD=AC(D nằm giữa A và C)
hay AD+CD=20cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)
Vậy: AD=7,5cm; CD=12,5cm
e) Đề sai rồi bạn
a, Vì ΔDEF vuông tại D⇒ \(\widehat{FDE}=90^0\)
hay \(\widehat{ADB}=90^0\)
Vì DK là đường cao của ΔDEF
⇒ DK ⊥ EF
⇒ \(\widehat{DKE}=\widehat{DKF}=90^0\)
Vì KA ⊥ DE ⇒ \(\widehat{DAK}=\widehat{A_1}=90^0\)
Vì KB ⊥ DF ⇒ \(\widehat{DBK}=\widehat{B_1}=90^0\)
Tứ giác ADBK có\(\left\{{}\begin{matrix}\widehat{ADB}=90^0\\\widehat{DAK}=90^0\\\widehat{DBK}=90^0\end{matrix}\right.\)
⇒ Tứ giác ADBK là hình chữ nhật
⇒ AB = DK (hai đường chéo trong hình chữ nhật)(đpcm)
b, Vì C đối xứng với D qua I
⇒ I là trung điểm của CD
Tứ giác DFCK có
\(\left\{{}\begin{matrix}\text{I là trung điểm của FK}\\\text{I là trung điểm của CD}\\\text{Đường chéo FK và CD}\end{matrix}\right.\)
⇒ Tứ giác DFCK là hình bình hành
⇒ DF // CK (đpcm)
c,
Vì tứ giác ADBK là hình chữ nhật
⇒ AK // BD
⇒ AK // DF
Ta có \(\left\{{}\begin{matrix}\text{DF // CK }\\\text{AK // DF}\end{matrix}\right.\)
⇒ A, K, C thẳng hàng (tiên đề Ơclit)
Vì DF // CK
⇒ BF // AC
⇒ Tứ giác BFAC là hình thang (1)
Kẻ thêm: Từ F kẻ FN ⊥ AC
⇒ \(\widehat{CNF}=\widehat{KNF}=90^0\)
Vì tứ giác ADBK là hình chữ nhật
⇒ \(\widehat{AKB}=90^0\)
Vì \(\left\{{}\begin{matrix}\text{FN ⊥ AC}\\\text{BF // AC}\end{matrix}\right.\)⇒ BF ⊥ FN
⇒ \(\widehat{BFN}=90^0\)
Tứ giác BFNK có \(\left\{{}\begin{matrix}\widehat{BFN}=90^0\\\widehat{B_1}=90^0\\\widehat{KNF}=90^0\end{matrix}\right.\)
⇒ Tứ giác BFNK là hình chữ nhật
⇒ FN = BK (2 đường chéo)
Vì tứ giác DFCK là hình bình hành
⇒ CF = DK
mà AB = CK
⇒ AB = CF
ΔABK và ΔCFN có \(\left\{{}\begin{matrix}\text{AB = CF}\\\widehat{CNF}=\widehat{AKB}=90^0\\\text{FN = BK}\end{matrix}\right.\)
⇒ ΔABK ~ ΔCFN (ch.cgv)
⇒ \(\widehat{A_2}=\widehat{ACF}\) (2)
Từ (1), (2) ⇒ Tứ giác BFCA là hình thang cân (đpcm)
d, Ta có
\(\left\{{}\begin{matrix}\text{Tứ giác ADBK là hình chữ nhật}\\\text{Đường chéo AB và DK}\\\text{AB cắt DK tại O}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\text{O là trung điểm của AB }\\\text{O là trung điểm của DK }\end{matrix}\right.\)
Vì I là trung điểm của FK
⇒ DI là đường trung tuyến của ΔCDK
Vì O là trung điểm của DK
⇒ FO là đường trung tuyến của ΔCDK
ΔCDK có
\(\left\{{}\begin{matrix}\text{DI là đường trung tuyến của ΔCDK}\\\text{FO là đường trung tuyến của ΔCDK}\\\text{DI cắt FO tại H}\end{matrix}\right.\)
⇒ H là trọng tâm của ΔCDK
⇒ DH = \(\frac{2}{3}\)DI (Trọng tâm của tam giác cách đều mỗi đỉnh một khoảng bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó) (3)
Vì I là trung điểm của CD
⇒ DI = \(\frac{1}{2}\)CD (4)
Thay (4) vào (3), ta có
DH = \(\frac{2}{3}.\frac{1}{2}\)CD
⇒ DH = \(\frac{1}{3}\)CD
⇒ CD = 3DH (đpcm)
Chúc bạn học tốt !!!
cái hình đẹp , duyệt đợi ty lm
a, vì M là trung điểm AC suy ra: AM=MC (1)
F là điểm đối xứng với E qua M suy ra : EM=MF (2)
Từ (1) và (2) suy ra : AECF là hbh.