Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE

Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC và tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF
CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD
EAF + FAC + CAB + BAE = 3600
EAF + 900 + CAB + 900 = 3600
EAF + CAB + 1800 = 3600
EAF + CAB = 3600 - 1800
EAF + CAB = 1800
mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)
=> EAF = DBA
Xét tam giác EAF và tam giác ABD có:
EA = AB (gt)
EAF = ABD (chứng minh trên)
AF = BD (chứng minh trên)
=> Tam giác EAF = Tam giác ABD (c.g.c)
=> EF = BD (2 cạnh tương ứng)

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
hay AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đo: ΔABD=ΔACE
c: Ta có: ΔABD=ΔACE
nên AD=AE
Xét ΔABE và ΔACD có
AB=AC
\(\widehat{ABE}=\widehat{ACD}\)
AE=AD
Do đó: ΔABE=ΔACD

a. Xét tg ABH vag tg CAI
Ta có: góc BAH = góc ACI=90 độ - góc IAC
AB=AC
góc AHB= góc CIA=90 độ
Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)
AD+BH=IC+AI=AB=AC
=>\(BH^2+CI^2\) có giá trị không đổi
c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD
AM vuông góc với DC =>AM là đường cao của tg ACD
Mà 2 đường cao CI và AM cắt nhau tại N
=>DN là đường cao thứ 3 của tg ACD
Vậy DN vuông góc với AC
d. AM vuông góc với BM
AI vuông góc với BH
=>góc MBH=góc MAI
Xét tg BHM và tg AIM
Ta có: BH=AI (chứng minh câu a)
Góc MBH=góc MAI(cmt)
BM=AM
Nên tg BHM=tg AIM(g.c.g)
=>HM=IM(1)
Góc BMH=góc AMI(2)
Từ (1) và (2) ta có:
Tg IMH vuông cân tại M
Vậy IM là tia phân giác của góc HIC

a: Xét ΔMAB và ΔMDC có
MA=MD
\(\hat{AMB}=\hat{DMC}\) (hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=DC
ΔMAB=ΔMDC
=>\(\hat{MAB}=\hat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
b: Xét ΔMBA và ΔMCD có
\(\hat{MBA}=\hat{MCD}\) (hai góc so le trong, AB//CD)
MB=MC
\(\hat{BMA}=\hat{CMD}\) (hai góc đối đỉnh)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
Giải:
Câu a:
Xét tứ giác ABCD có:
AM = MD (gt)
MB = MC (gt)
⇒ Tứ giác ABCD là hình bình hành(tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành)
Tứ giác ABCD là hình bình hành(cmt)
⇒ AB song song và bằng CD (đpcm)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
=> ΔAMK=ΔCMK(c.c.c)
=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)
Mà AC//BD(ABDC là hình chữ nhật)
\(\Rightarrow MK\perp BD\)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
AM=MC(=12AD=12BC)AM=MC(=12AD=12BC)
=> ΔAMK=ΔCMK(c.c.c)
=> ˆMKA=ˆMKC=1800:2=900⇒MK⊥ACMKA^=MKC^=1800:2=900⇒MK⊥AC
Mà AC//BD(ABDC là hình chữ nhật)
⇒MK⊥BD