Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có : góc BAH = góc BCA ( cùng phụ với góc ABC )
=> Tam giác BHA đồng dạng với tam giác BAC (g.g)
=> BH/BA = BA/BC
=> BH/BC = BA^2
Tk mk nha
a) ABC có
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của ABC
=> MN = AC = .20 = 10 ( cm )
vuông tại A
=>
=>
= 25 cm
có
AN là đường trung tuyến ( NB = NC )
=> AN = = = 12,5 ( cm ))
b) ABDC có 2 đường chéo AD , BC cắt nhau tại N
mà CN = ND ( gt )
AN = ND ( gt )
=> ABDC là hình bình hành
mà
=> ABDC là hình chữ nhật
*(Cho mình 1 nút like vs bn ơi )
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)
Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)
=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)
=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔBME~ΔBAC
=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)
=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)
=>BE=25(cm)
Ta có: BE=BA+AE
=>AE+18=25
=>AE=7(cm)
ΔCAE vuông tại A
=>\(CA^2+AE^2=CE^2\)
=>\(CE^2=7^2+24^2=625\)
=>\(CE=\sqrt{625}=25\left(cm\right)\)
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm