\(\widehat{A}=90^{_{ }^{ }}\)) Đường cao AH. Biết AC=20cm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

Áp dụng định lý Pi-ta-go trong △BHA vuông tại H⇒AB2=AH2+BH2=AH2+81

Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2+81}+\dfrac{1}{400}=\dfrac{400+AH^2+81}{400\left(AH^2+81\right)}=\dfrac{481+AH^2}{400\left(AH^2+81\right)}\Rightarrow400\left(AH^2+81\right)=AH^2\left(481+AH^2\right)\Rightarrow400AH^2+32400=481AH^2+AH^4\Rightarrow AH^4+81AH^2-32400\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒AH2=BH.CH⇒\(CH=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\left(cm\right)\)

Ta có BC=CH+BH=9+16=25(cm)

2 tháng 9 2018

Ta có: AC2 = CH.BC

<=> AC2 = (BC - BH) . BC

<=> 202 = (BC - 9) . BC => BC = \(\left[{}\begin{matrix}16cm\left(n\right)\\-25cm\left(l\right)\end{matrix}\right.\)

Ta có: AH2 = BH.CH

<=> AH2 = 9 . (16 - 9 ) => AH \(\approx\) 7,9cm

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

10 tháng 9 2020

A B C

a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:

BC= AB2 + AC2

BC= 21+ 722

BC= 5625

BC = 75 (cm)

b, Tam giác ABC vuông tại A, đường cao AH

Ta có: AB2 = BH . BC (định lí 1)

           212 = BH . 75

           BH = 441 : 75

           BH = 5,88 (cm)

Ta có : BC = BH + HC

            75 = 5,88 + HC

            HC = 75 - 5,88

            HC = 69,12 (cm)

Ta có: AH2 = BH . HC

          AH2 = 5,88 . 69,12

          AH2 = 406,4256

          AH = 20,16 (cm)

c, (Bạn tự vẽ tia p/g nha)

Theo tính chất đường phân giác góc B ta có:

=> AD/ DC = AB/ BC

=> AD/ AB = DC/BC

=> AD/ 21 = DC/ 75

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4

=> AD/ 21 = 3/4 => AD = 15,75 (cm)

=> DC/ 75 = 3/4 => DC = 56, 25 (cm)

Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33

CHÚC BẠN HỌC TỐT !!!

23 tháng 3 2020

A B C H

\(S_{\Delta ABC}=\frac{AH\cdot BC}{2}=\frac{6\cdot10}{2}=\frac{60}{2}=30\left(cm^2\right)\)

Vậy \(S_{\Delta ABC}=30cm^2\)

23 tháng 3 2020

Cảm ơn bạn đã trả lời câu hỏi. Nhưng bạn trả lời sai rồi

9 tháng 6 2019

Ta có:\(sin\widehat{BAH}\)=\(\frac{2}{3}\)\(\Rightarrow sin\widehat{BAH}\)\(\approx sin42^o\)

                                           \(\Rightarrow\widehat{BAH}\)=\(42^o\)

Vì AH là đường cao => \(AH\perp BC=\left\{H\right\}\)

                                \(\Rightarrow\widehat{AHB}\)=\(\widehat{AHC}\)=\(90^O\)

Xét tam giác AHB vuông tại H:

   \(\widehat{BAH}\)+\(\widehat{B}\)=\(90^O\)\(\Rightarrow\widehat{B}\)=\(48^O\)

Xét tam giác ABC vuông tại A, đường cao AH:

   +) \(sin\widehat{B}\)=\(\frac{AC}{BC}\)\(\Leftrightarrow sin48^o=\frac{3}{BC}\)

                                      \(\Rightarrow BC=4\left(cm\right)\)

   +) \(BC^2=AB^2+AC^2\)

      \(\Rightarrow AB=\sqrt{BC^2-AC^2}\)

       \(\Rightarrow AB\approx2,6\left(cm\right)\)

   +) \(AH.BC=AB.AC\)(hệ thức giữa cạnh và đường cao)

       \(\Rightarrow AH=\frac{AB.AC}{BC}\)

        \(\Rightarrow AH\approx2\left(cm\right)\)

\(S\)ABC =\(\frac{AH.BC}{2}\)\(4\left(cm^2\right)\)

*Mình sợ sẽ có sai sót nên bạn kiểm tra lại nhé

~HỌC TỐT~