Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) trong tam giac ABC co
AB^2+AC^2=BC^2. THAY so vao duoc AC=8
b) xet tam giac AHB vung tai H va tam giac AHD( 2 canh goc vuong)
suy ra AB=AD
suy ra tam giac ABD can tai A
c) trong tam giac ABH co goc BAH +ABH=90 ( TINH CHAT 2 GOC NHON CUA TAM GIAC VUONG) (1)
trong tam giac ABC vuong tai A CO
ABH+ACB=90 (2 )
TU (1) VA (2) suy ra BAH =ACB(3)
TUONG TU TRONG TAM, GIAC ADH VA TAM GIAC CDE CO HDA=CDE ( doi dinh )
suy ra HAD = DCE (4)
TU (3) VA(4) suy ra dpcm( BAH=HAD( tam giac cau b)
ban tu ve hinh nhe
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2
AB = 6 cm (gt); BC = 10 cm (gt)
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AC >0
a:
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc HDA=góc EDC
=>ΔDHA=ΔDEC
=>DH=DE
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔCIA có
CH,AE là đường cao
CH cắt AE tại D
=>D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó;ΔAHB=ΔAHD
b: ta có: ΔAHB=ΔAHD
nên AB=AD
hay ΔABD cân tại A
mà \(\widehat{B}=60^0\)
nên ΔABD đều
xét tg AHB và tg AHD có
AH :chung
góc AHB = góc AHD (=90o)
BH=HD (gt)
=> 2 tg bằng nhau (c-g-c)
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân