K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

a) trong tam giac ABC co 

AB^2+AC^2=BC^2. THAY so vao duoc AC=8

b) xet  tam giac AHB vung tai H va tam giac AHD( 2 canh goc vuong) 

suy ra AB=AD 

suy ra tam giac ABD can tai A 

c) trong tam giac ABH co  goc BAH +ABH=90 ( TINH CHAT 2 GOC NHON CUA TAM GIAC VUONG) (1)

trong tam giac ABC vuong tai A CO 

ABH+ACB=90 (2 )

TU (1) VA (2) suy ra BAH =ACB(3)

TUONG TU   TRONG TAM, GIAC ADH VA TAM GIAC CDE CO HDA=CDE ( doi dinh ) 

suy ra HAD = DCE  (4) 

TU (3) VA(4) suy ra dpcm( BAH=HAD( tam giac cau b)

ban tu ve hinh nhe

13 tháng 4 2019

tam giác ABC vuông tại A (gt)

=> AB^2 + AC^2 = BC^2

AB = 6 cm (gt); BC = 10 cm (gt)

=> 6^2 + AC^2 = 10^2

=> AC^2 = 100 - 36

=> AC^2 = 64

=> AC = 8 do AC  >0

a:

a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc HDA=góc EDC

=>ΔDHA=ΔDEC

=>DH=DE

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC

d: Xét ΔCIA có

CH,AE là đường cao

CH cắt AE tại D

=>D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

Do đó;ΔAHB=ΔAHD

b: ta có: ΔAHB=ΔAHD

nên AB=AD
hay ΔABD cân tại A

mà \(\widehat{B}=60^0\)

nên ΔABD đều

19 tháng 5 2022

xét tg AHB và tg AHD có 
AH :chung 
góc AHB = góc AHD (=90o
BH=HD (gt) 
=> 2 tg bằng nhau (c-g-c) 

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: ΔABD cân tại A

=>góc ADH=góc ABH

mà góc ABH=góc HAC

nên góc ADH=góc HAC

ΔABD cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAD

=>góc BAH=góc DAH

mà góc BAH=góc ACB

nên góc DAH=góc ACB

c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

góc HDA=góc EDC

=>ΔDHA đồng dạng với ΔDEC

=>góc ECD=góc HAD

=>góc ECB=góc ACB

=>CB là phân giác của góc ACE

e: ΔBAD cân tại A

=>góc ADB<90 độ

=>góc ADC>90 độ

Xét ΔADC có góc ADC>90 độ

nên AC là cạnh lớn nhất

=>AC>CD

11 tháng 5 2022

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

17 tháng 5 2022

lol