K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

b ) Xét tam giác BMD và tam giác CNE , có :

BD = CE ( gt)

góc MBD = góc ABC 

góc NCE = góc ACB

mà góc ABC = góc ACB nên góc MBD = góc NCE

=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )

=> DM = EN ( 2 cạnh tương ứng )

29 tháng 7 2015

c ) Xét tam giác MBA và tam giác NCA , có :

AB=AC ( gt)

MB = NC ( tam giác BMD = CNE )

180 - góc ABC = góc ABM

180 - góc ACB = góc ACN

mà góc ABC = góc ACB nên góc ABM = góc ACN

=> tam giác MBA = tam giác NCA (c.g.c)

=> AM = AN ( 2 cạnh tương ứng)

=> tam giác AMN cân 

3 tháng 1 2018

a) Xét tứ giác AMIN, ta có:

\(\widehat{A}\) = 90o (△ABC vuông tại A)

\(\widehat{M}\) = 90o (IM ⊥ AB tại M)

\(\widehat{N}\) = 90o (IN ⊥ AC tại N)

Vậy tứ giác AMIN là hình chữ nhật.

b) *Xét △AIC, ta có:

IA = IC (AI là đường trung tuyến của △vABC)

⇒ △AIC cân tại A

Mà IN ⊥ AC (gt)

Nên IN là đường cao của △AIC

⇒ Đồng thời là đường trung tuyến

⇒ AN = NC

*Xét tứ giác ADCI, ta có:

IN = ND (gt)

AN = NC (cmt)

⇒ ADCI là hình bình hành

Mà AI = IC (cmt)

Vậy ADCI là hình thoi.

c) Gọi O là giao điểm BN và AI

Vì ADCI là hthoi (cmt)

⇒ AI // CD

\(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)

*Cm: △INP = △DNK (g.c.g)

⇒ IP = DK

*Vì ADCI là hthoi (cmt)

⇒ AI = DC

*Ta có:

AN = NC (cmt)

⇒ BN là đường trung tuyến

*Xét △ABC, ta có:

AI, BN là đường trung tuyến (gt,cmt)

Mà AI, BN cắt nhau tại B (theo cách vẽ)

Nên P là trọng tâm của △ABC

\(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)

Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)