Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: góc ^ADC=180* -(^CAD+^C)
^BDA=180*-(^BAD+^B)
mà ^CAD=^BAD(giả thiết)
^C=^B(giả thiết)
--> ^ADC=^BDA
lại có:
^CAD=^BAD(gt)
AD chung
--> tam giác ABD=tam giác ACD
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
Ta có hình vẽ sau:
a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)
Xét ΔABH và ΔDBH có:
BH là cạnh chung
\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)
AH = DH (gt)
=> ΔABH = ΔDBH (c.g.c) (đpcm)
b) Vì ΔABH = ΔDBH (ý a)
=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)
= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)
c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)
AB = DB (cm tên)
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)
d) Vì ΔABH = ΔDBH (ý a)
=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB
=> NB = ND = \(\frac{1}{2}\)DB
=> N là trung điểm của BD(đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: cạnh chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)
=> \(\widehat{ABC}\)=\(\widehat{DBC}\)
=> BC là phân giác của góc ABD (đpcm)
c/ Xét tam giác ABC và tam giác DBC có:
BC: cạnh chung
\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)
AB = DB (vì tam giác ABH = tam giác DBH)
=> tam giác ABC = tam giác DBC (c.g.c)
=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)
d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)
Mà BM = AM
=> BN = DN
\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)