Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)
\(\Rightarrow\cos C=\frac{4}{5}\)
\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)
Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau
\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)
\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)
Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\)
=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)
=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)
=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)
Đến đây thì xong rồi:))
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)
\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)
neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink
Có:
\(cosC=sinB=\dfrac{5}{13}\)
\(cosB=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ \Rightarrow sinC=\dfrac{12}{13}\)
\(tgC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)
\(\Rightarrow cotgC=\dfrac{5}{12}\)