K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

10 tháng 4 2017

 bài 2 bạn tự vẽ hình nha

xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC 

==> tam giác ABC đồng dạng với tam giác DBA 

==> AB/BC=BD/AB (1)

xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)

xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)

từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )

24 tháng 4 2021

a, Xét ΔABC có góc BAC vuông

=> \(BC^2=AB^2+AC^2\)

=> \(BC^2=25\)

\(\Rightarrow BC=5\) (cm)

   Xét ΔABC và ΔDAC, có

          \(\widehat{BAC}=\widehat{ADC}\)          

          \(\widehat{C}\) chung          

=> ΔABC∼ΔDAC(g.g)

=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)

=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)

\(\Rightarrow AD=2,4cm\)

24 tháng 4 2021

b, Vì ΔABC∼ΔDAC (cmt)

=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)

  Xét ΔADB và ΔADC, có:

   +   \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)

   +   \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)

=> ΔADB∼ΔADC (c.g.c)

=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)

\(\Rightarrow AD.AD=BD.DC\)

=> \(AD^2\)= BD.DC(đpcm)

15 tháng 5 2017

a) Xét tam giác ADB và tam giác BAC, ta có:
   Góc B chung
   Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)

16 tháng 5 2017

A B D E C H

a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)

b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)

c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)

\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)

Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))

\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)

\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)

18 tháng 5 2017

Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v