K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

+)Xét tam giác ABC vuông tại A

 \( \implies\)\(AB^2+AC^2=BC^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(c^2+b^2=BC^2\)

\( \implies\) \(BC=\sqrt{b^2+c^2}\) 

+)Ta có : \(AD=\frac{1}{2}BC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

 \( \implies\) \(AD=\frac{1}{2}.\sqrt{b^2+c^2}\)

\( \implies\) \(AD=\frac{\sqrt{b^2+c^2}}{2}\)

+)Xét tam giác BAE vuông tại A 

\( \implies\) \(BE^2=AB^2+AE^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(BE^2=c^2+\left(\frac{b}{2}\right)^2\)

\( \implies\) \(BE^2=c^2+\frac{b^2}{4}\)

\( \implies\) \(BE=\sqrt{c^2+\frac{b^2}{4}}\)

+)Xét tam giác ABC có :

Hai đường trung tuyến AD ; BE cắt nhau tại G 

 \( \implies\) G là trọng tâm của tam giác ABC

\( \implies\) \(BG=\frac{2}{3}BE\)

Mà \(BE=\sqrt{c^2+\frac{b^2}{4}}\) 

\( \implies\) \(BG=\frac{2}{3}.\sqrt{c^2+\frac{b^2}{4}}\)

\( \implies\) \(BG=\frac{2}{3}.\sqrt{\frac{4c^2+b^2}{4}}\)

\( \implies\)  \(BG=\frac{2}{3}.\frac{\sqrt{4c^2+b^2}}{2}\)

\( \implies\) \(BG=\frac{\sqrt{4c^2+b^2}}{3}\)

+) \(AD=\frac{1}{2}BC=BD=DC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

+)G là trọng tâm của tam giác ABC 

\( \implies\) \(GD=\frac{1}{3}AD=\frac{1}{3}BD=\frac{1}{3}.\frac{\sqrt{b^2+c^2}}{2}=\frac{\sqrt{b^2+c^2}}{6}\) 

+)Để AD vuông góc với BE thì tam giác BGD là tam giác vuông tại G

\( \implies\) \(BG^2+GD^2=BD^2\) ( Theo định lý Py - ta - go )

 \( \implies\) \(\left(\frac{\sqrt{4c^2+b^2}}{3}\right)^2+\left(\frac{\sqrt{b^2+c^2}}{6}\right)^2=\left(\frac{\sqrt{b^2+c^2}}{2}\right)^2\)

\( \implies\) \(\frac{4c^2+b^2}{9}+\frac{b^2+c^2}{36}=\frac{b^2+c^2}{4}\)

\( \implies\)  \(\frac{4\left(4c^2+b^2\right)}{36}+\frac{b^2+c^2}{36}=\frac{9\left(b^2+c^2\right)}{36}\)

\( \implies\) \(16c^2+4b^2+b^2+c^2=9b^2+9c^2\)

\( \implies\) \(17c^2+5b^2=9b^2+9c^2\)

\( \implies\) \(8c^2=4b^2\)

\( \implies\) \(2c^2=b^2\)

\( \implies\) \(b=\sqrt{2c^2}\)

\( \implies\) \(b=\sqrt{2}c\) 

Vậy để AD vuông góc với BE thì : \(b=\sqrt{2}c\) 

13 tháng 3 2020

A B C c b D E G

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
9 tháng 5 2021

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

9 tháng 5 2021

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)