\(\widehat{BCA}\) = 30 , gọi D là trung điểm AC và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AD}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BD}\right)\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{BC}\)

\(=\dfrac{8}{9}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AC}\)

Vì 8/9:1=2/9:1/4

nên B,E,K thẳng hàng

16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).


8 tháng 11 2016

A B C D I K

a)

  • \(\overrightarrow{BI}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\) (t/c trung điểm)

\(=\frac{1}{2}\left(\overrightarrow{BA}+\frac{1}{2}\overrightarrow{BC}\right)\)

\(=\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\)

  • \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)

\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{AC}\)

\(=\overrightarrow{BA}+\frac{1}{3}\left(\overrightarrow{BC}-\overrightarrow{BA}\right)\)

\(=\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}-\frac{1}{3}\overrightarrow{BA}\)

\(=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}\)

b) Ta có: \(\overrightarrow{BK}=\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}=\frac{4}{3}\left(\frac{1}{2}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\right)=\frac{4}{3}\overrightarrow{BI}\)

=> B,K,I thẳng hàng

c) \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)

\(\Leftrightarrow27\left(\overrightarrow{MC}+\overrightarrow{CA}\right)-8\left(\overrightarrow{MC}+\overrightarrow{CB}\right)=2015\overrightarrow{MC}\)

\(\Leftrightarrow27\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{MC}-8\overrightarrow{CB}-2015\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow-1996\overrightarrow{MC}+27\overrightarrow{CA}-8\overrightarrow{CB}=\overrightarrow{0}\)

\(\Leftrightarrow1996\overrightarrow{CM}=8\overrightarrow{CB}-27\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)

Vậy: Dựng điểm M sao cho \(\overrightarrow{CM}=\frac{8\overrightarrow{CB}-27\overrightarrow{CA}}{1996}\)

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB Chứng minh \(\overrightarrow{BC'}\)...
Đọc tiếp

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB

Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\) =\(\overrightarrow{A'B'}\)

4. Cho vecto \(\overrightarrow{AB}\)và một điểm C. Hãy dựng điểm D sao cho \(\overrightarrow{AB}\) =\(\overrightarrow{CD}\)

5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh \(\overrightarrow{MP}\) =\(\overrightarrow{QN}\) , \(\overrightarrow{MQ}\)=\(\overrightarrow{PN}\)

6. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng

(1) \(\overrightarrow{AB}\) -\(\overrightarrow{BC}\) =\(\overrightarrow{DB}\) , | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= AC

(2) Nếu | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= | \(\overrightarrow{CB}\) - \(\overrightarrow{CD}\) | thì ABCD là hình chữ nhật

7. Cho tam giác ABC đều có độ dài cạnh là a. Tính độ dài các vecto \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) , \(\overrightarrow{AB}\) - \(\overrightarrow{BC}\)

0
3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !