Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
B.
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = √400400 = 20 (cm)
mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
a: AM=BC/2=3cm
b: Xét tứ giác AMCN có
O là trung điểm chung của AC và MN
MA=MC
Do đó: AMCN là hình thoi
a: Xét tứ giác AMBD có
I là trung điểm của AB
I là trung điểm của MD
Do đó: AMBD là hình bình hành
mà MA=MB
nên AMBD là hình thoi
\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao
Vì D là trung điểm AC và MN nên AMCN là hình bình hành
Mà \(AM\bot BC\Rightarrow AM\bot MC\)
Do đó: AMCN là hình chữ nhật
\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)
Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)
Vậy ABMN là hình bình hành
\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)
Áp dụng PTG vào tam giác ABM vuông M
\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)
Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)
a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).
\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.
Xét tứ giác AMCN có:
+ D là trung điểm của MN (N đối xứng với M qua D).
+ D là trung điểm của AC (gt).
\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).
Lại có: \(\widehat{AMC}\) = 90o (cmt).
\(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).
b) Tứ giác AMCN là hình chữ nhật (cmt).
\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).
\(\Rightarrow\) AN // BM.
Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.
Mà AN = MC (Tứ giác AMCN là hình chữ nhật).
\(\Rightarrow\) BM = MC = AN.
Xét tứ giác ABMN có:
+ BM = AN (cmt).
+ BM // AN (cmt).
\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).
c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).
Xét tam giác AMB vuông tại M có:
AB2 = AM2 + BM2 (Định lý Pytago).
Thay số: 52 = AM2 + 32.
\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).
Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).
a: M đối xứng N qua AB
nên AM=AN; BM=BN
mà MA=MB
nên MA=MB=AN=BN
=>AMBN là hình thoi
b: Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
=>AM cắt CN tại trung điểm của mỗi dường
=>N,I,C thẳng hàng
c: BC=2*AM=10cm
=>AB=8cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
Ta có: N đối xứng M qua O \(\Rightarrow\) O là trung điểm của MN
Ta có: AM là đường trung tuyến \(\Rightarrow\) M là trung điểm của AB \(\Rightarrow\) MC = MB = \(\dfrac{BC}{2}\)
Xét \(\Delta\) ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow\) AM = \(\dfrac{BC}{2}\)
Mà MC = \(\dfrac{BC}{2}\)
\(\Rightarrow\) AM = MC
Xét tứ giác AMCN có:
O là trung điểm của AC
O là trung điểm của MN
AC \(\cap\) MN = {O}
\(\Rightarrow\) Tứ giác AMCN là hình bình hành
Mà AM = MC
\(\Rightarrow\) Tứ giác AMCN là hình bình hành
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM=BC/2
Xét tứ giác AMBE có
D là trung điểm của đường chéo AB
D là trung điểm của đường chéo ME
Do đó: AMBE là hình bình hành
mà AM=BM
nên AMBE là hình thoi
tam giac MAC can =>MN la p,giac;trung tuyen ;cao;vg goc...=>AO=OC(goi giao diem cua 2dg cheo MN;ACla O)
=>tu gia MNCN la hbh=>hbh co 2canh ke =nhau la hinh thoi.
b,AC=8=>AO=4;coBM=MC=5
=>MO=3
=>MN=3+3=6cm