Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC và ΔB'A'C có
BC=B'C
\(\widehat{BCA}=\widehat{B'CA'}\)
CA=CA'
Do đó: ΔBAC=ΔB'A'C
Suy ra: \(\widehat{ABC}=\widehat{A'B'C}\)
xét tg ABC và tg EDC có
BC = EC ( gt )
góc BCA = góc DCE ( 2 góc đối đỉnh )
AC = DC
ABC = EDC
suy ra góc BAC = góc CDE = 90 độ
bạn chép tạm nha, những câu còn lại mình đang làm nha
a) Áp dụng định lí tổng 3 góc trong 1 tam giác ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
hay \(90^o+50^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-50^o=40^o\)
b) Xét \(\Delta ABCvà\Delta DECcó\)
AC = DC ( gt )
CB = CE ( gt )
\(\widehat{ECD}=\widehat{BCA}\) ( đối đỉnh )
\(\Rightarrow\Delta ABC=\Delta DEC\) ( c.g.c )
c) \(\Rightarrow\widehat{E}=\widehat{B}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//DE\)
câu d mik chịu nhe !!!
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
a, Xét △ABC và △DCE có
AC = CD
C^ đối đỉnh
BC = CE
=> △ABC = △DCE
b, VÌ △ABC = △DCE nên góc BAC = góc CDE
=> CDE = 90 độ
c, Vì BE = BC + CE = 20
Mà BC = CE = \(\dfrac{BC}{2}\) = \(\dfrac{20}{2}\) = 10
Vì AD = AC + CD = 16
Mà AC = CD = \(\dfrac{AD}{2}\) = \(\dfrac{16}{2}\) = 8
Áp dụng định lý Pytago
ta có : \(BC^2=AB^2+AC^2\)
\(10^2=AB^2+8^2\)
\(100=AB^2+64\)
\(AB^2=100-64=36\)
Vậy \(AB=6^2\)
Mong bạn tick cho mik :))
Tham Khảo:
a) Xét ΔABC và ΔMNC, ta có:
BC=NC (gt)
ˆBAC=ˆNCM (đối đỉnh)
AC=CM (gt)
⇒ΔABC=ΔMNC (c-g-c)
b) Vì ΔABC=ΔMNC nên ˆBAC=ˆCMN=900 ( 2 góc tương ứng)
hay AM⊥MN
c) Ta có: A,C,M thẳng hàng nên ˆACE+ˆECM=1800 (kề bù)
mà ˆACE=ˆOCM ( đối đỉnh)
⇒ˆOCM+ˆECM=1800
⇒ ba điểm E,C,O thẳng hàng
hay CE đi qua trung điểm của đoạn thẳng MN
từ đề suy ra được : MN//AB
Áp dụng theo đl ta-lét thì:
\(\dfrac{MN}{AB}=\dfrac{NC}{CA}\)
mà CN=CA suy ra:
\(\dfrac{CN}{CA}=1\)
\(mà\dfrac{MN}{AB}=\dfrac{CN}{CA};\Rightarrow\dfrac{MN}{AB}=1\)
<=> MN = AB hay AB = NM( đpcm)