Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
ta có : CABˆ+ DAB^ = 180( 2 góc kề bù )
=> 90 + DAB^ =180
=> DAB^ = 90
Xét △ABC và △ABD có:
AD = AC ( gt )
CABˆ = DABˆ=90
AB cạnh chung
=> △ABC = △ABD ( c-g-c )
=> DB = CB
ABDˆ= ABC^ <=> MBDˆ = MBC^
b ) Xét △MBD và △MBC có :
MAD^ = MBC^ ( cmt )
DB = DC ( cmt )
MB cạnh chung
=> △MBD = △MBC ( c-g-c ).
a) Ta có: Tam giác ABC vuông=> góc BAC= góc BAD=90
Xét tam giác ABC và ABD có
AB: cạnh chung
góc BAC=DAB
AC=AD
=> ΔABC = ΔABD(c.g.c)
b. A là trung điểm DC=> MA là trung tuyến tam giác MDC
Mặt khác MA vuông góc DC=> Tam giác MCD cân tại M=> MC=MD
Xét ΔMBD và ΔMBC:
MB: cạnh chung
MD=MC(c/m trên)
BC=BD( ΔABC = ΔABD)
=> ΔABC = ΔABD
Tự vẽ hình nhé ?
a) Vì tam giác ABC vuông tại A (GT)
=> Góc BAC = 90o (ĐN)
Mà góc BAC + góc BAD = 180o (kề bù)
=> Góc BAC = góc BAD = 180o : 2 = 90o (1)
Xét tam giác ABC và tam giác ABD có :
AC = AD (GT)
Góc BAC = góc BAD = 90o (Theo (1))
AB chung
=> Tam giác ABC = tam giác ABD (c.g.c) (2)
b) Từ (2) => Góc ABC = góc ABD (2 góc tương ứng)
Mà góc ABC + góc MBC = 180o (kề bù)
góc ABD + góc MBD = 180o (kề bù)
=> Góc MBC = góc MBD (3)
Từ (2) => BC = BD (2 cạnh tương ứng) (4)
Xét tam giác MBD và tam giác MBC có :
BM chung
Góc MBD = góc MBC (Theo (3))
BD = BD (Theo (4))
=> Tam giác MBD = tam giác MBC (c.g.c)
Vậy ...
a) Xét tam giác ABC và tam giác ABD có :
AD=AC (GT)
góc BAD = góc BAC (=90 độ)
AB là cạnh chung
=> tam giác ABC = tam giác ABD (c-g-c)
b) vì tam giác ABC = tam giác ABD (cmt)
=> BD=BC ( 2 cạnh tương ứng)
góc B1 = góc B2 (2 góc tương ứng)
Xét tam giác MBD và tam giác MBC có :
BD=BC (cmt)
góc B1 = góc B2 (cmt)
BM là cạnh chung
=>tam giác MBD=tam giác MBC (c-g-c)
Hình bn tự vẽ nha!!!
a,Xét ∆ABC và ∆ADC có
AB=AD (gt)
Góc BAC = góc DAC = 90°
AC : cạnh chug
=> ∆ABC = ∆ADC ( c.g.c)
=> góc ABC= góc ADC và góc BCA = góc DCA ( 2 góc tươg ứg ). (1)
=>Góc BAC= góc B + góc ACB và góc DAC = góc D + góc DCA. (2)
Mà góc B = Góc D. (3)
Từ (1),(2),(3)=> góc BCA+ góc DCA= 90° hay góc BCD=90°. (4)
Từ (4)=> ∆BCD là ∆ vuôg
b, ∆ABC = ∆ADC ( câu a)=> BC = CD = 5cm
Tam giác ABC cân tại A
=> Góc ABC = góc ACB (hai góc kề một đáy)
Xét tam giác ABD có AB = AD (= AC)
=> Tam giác ABD cân tại A
=> Góc ABD = góc ADB (hai góc kề một đáy).
Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)
Do vậy góc DBC = 90 độ
Vậy tam giác BCD là tam giác vuông vì có góc DBC + 90 độ.
Tam giác ABC cân tại A
=> Góc ABC = góc ACB (hai góc kề một đáy)
Xét tam giác ABD có AB = AD (= AC)
=> Tam giác ABD cân tại A
=> Góc ABD = góc ADB (hai góc kề một đáy).
Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)
Do vậy góc DBC = 90 độ
=>tam giác BCD là tam giác vuông vì có góc DBC =90 độ.
Lời giải:
a)
Ta có: \(\angle BAD=180^0-\angle BAC=180^0-90^0=90^0\)
\(\Rightarrow \angle BAD=\angle BAC\)
Xét tam giác $ABC$ và $ABD$ có:
\(\left\{\begin{matrix} AC=AD\\ \angle BAC=\angle BAD(cmt)\\ BA -\text{chung }\end{matrix}\right.\Rightarrow \triangle ABC=\triangle ABD(c.g.c)\)
Ta có đpcm
b) Có:
\(\triangle ABC=\triangle ABD\Rightarrow BC=BD\) và \(\angle ABC=\angle ABD\Leftrightarrow \angle CBM=\angle DBM\)
Xét tam giác $MBD$ và $MBC$ có:
\(\left\{\begin{matrix} BC=BD(cmt)\\ \angle CBM=\angle DBM(cmt)\\ MB -\text{chung }\end{matrix}\right.\Rightarrow \triangle MBD=\triangle MBC(c.g.c)\)
Ta có đpcm.