K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2014

a) ADME là hình chữ nhật có ba góc vuông 

b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE

xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân

c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H

d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC

e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông

1 tháng 12 2014

A B C D M N K

a) Xét tứ giác AMDN có 3 góc vuông => AMDN là hình chữ nhật

b) Vì AD là đường trung tuyến của tam giác vuông ABC nên AD = DC

Tam giác NAD = tam giác NCD (CH - CGV) => AN = NC

Xét tứ giác ADCK có AC vuông góc với DK và AN = NC; DN = NK

=> ADCK là hình thoi

c) Để ADCK là hình vuông thì góc ADC = 90o

=> AD vừa là đường trung tuyến, vừa là đường cao của tam giác vuông ABC

=> Tam giác ABC vuông cân tại A

1 tháng 12 2014

Bài này dễ nên bạn tự suy nghĩ nha!!

a: Xét tứ giác BDCE có

BD//CE
BE//CD
DO đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của ED

17 tháng 11 2022

a: Xét tứ giác AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình chữ nhật

b: Vì M đối xứng với N qua AB

nên ABvuông góc với MN tại E và E là trung điểm của MN

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

nên AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

c: Xét tứ giác ANMC có

NM//AC

NM=AC

Do đó: ANMC là hình bình hành

=>AM cắt CN tại trung điểm của mỗi đường

=>C,O,N thẳng hàg

1 tháng 8 2015

a,Xét tam giác HBE(H=90 độ) và tam giác ABE(A=90 độ) có:

BE chung

góc HBE= góc ABE

=> tam giác HBE=tam giác ABE( c.huyền .góc nhọn) (đpcm)

b,Vì BE là tia phân giác của góc xBy

Suy ra EB=EA (theo t/c tia phân giác)

AH cắt BE tại K

Xét tam giác EHK và tam giác EAK

Có:

EH=EA(cmt)

góc HEK= góc AEK(2 góc tương ứng)

EK chung

=> Tam giác HEK=tam giác AEK(cgc)

=>HK=AK (1)

=> góc HKB= góc BKA=90 độ (2)

Từ (1) và (2) suy ra BE là đường trung trực của AH (đpcm)

c, Xét tam giác EHC(H=90 độ) và tam giác KAE(A=90 độ)

có :

góc CEH= góc KEA ( 2 góc đối đỉnh)

EH=EA

=> tam giác EHC=tam giác KAE

=>AE<EC(cạnh góc vuông nhỏ hơn cạnh huyền)