K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Hình bn ơi

11 tháng 12 2021

trong đề nó ko cho hình bạn

11 tháng 12 2021

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

11 tháng 12 2021

\(d,\) Gọi \(AE\cap BD=\left\{H\right\}\)

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{EBH}\\AB=AE\\BH\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABH=\Delta EBH\left(c.g.c\right)\\ \Rightarrow\widehat{BHA}=\widehat{BHE}\\ \text{Mà }\widehat{BHE}+\widehat{BHA}=180^0\left(\text{kề bù}\right)\\ \Rightarrow\widehat{BHE}=\widehat{BHA}=90^0\\ \Rightarrow BH\bot AE\\ \Rightarrow BD\bot AE\)

11 tháng 1 2022

a) Xét tam giác ABD và tam giác EBD:

+ AB = EB (gt).

+ BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).

\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).

b) Tam giác ABD = Tam giác EBD (cmt).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\) \(\widehat{BED}=90^o\)

c) Xét tam giác ABE: BA = BE (gt).

\(\Rightarrow\) Tam giác ABE cân tại B.

Mà BD là phân giác (gt).

\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).

\(\Rightarrow\) \(BD\perp AE.\)

22 tháng 12 2021

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

22 tháng 12 2021

a) Thấy 

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>

=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))

Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^

+ˆBMA=90o+BMA^=90o

Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o

⇒BN⊥MC⇒BN⊥MC

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o

Thì 

Lại có 

Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o

=> 

=>

=> BC//MN ( so le trong)

đpcm.

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

22 tháng 12 2021

Answer:

Phần c) thì nhờ các cao nhân khác thoii.

C E D A B 1 2

a) Ta xét tam giác ABD và tam giác EBD:

AB = EB (gt)

BD cạnh chung

\(\widehat{B_1}=\widehat{B_2}\)

Vậy tam giác ABD = tam giác EBD (c.g.c)

\(\Rightarrow DE=DA\)

b) Theo phần a), tam giác ABD = tam giác EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)