Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)ABD cân ở B vì có BA = BD,BI là phân giác của góc ABD nên BI là đường trung trực của AD
\(\Delta\)ACE cân tại C vì có CA = CE,CI là tia phân giác của góc ACE nên CI là đường trung trực của AE
Vậy I là giao điểm của các đường trung trực của \(\Delta\)AED
b) Từ I kẻ \(IP\perp AB,IM\perp BC,IN\perp CA\)
thì IP = IM = IN = m
\(\Delta\)API và \(\Delta\)ANI là tam giác vuông cân nên AP = AN = PI = IN = m
\(\Delta\)IPB = \(\Delta\)IMP (cạnh huyền - góc nhọn) => BP = PM(hai cạnh tương ứng)
Mà BA = BD => MD = AP = m
\(\Delta\)INC = \(\Delta\)IMC (cạnh huyền - góc nhọn) => CM = CN(hai cạnh tương ứng)
Mà CE = CA => EM = AN = m
Vậy DE + DM + ME = 2m
c) \(\Delta\)IDE có \(IM=\frac{1}{2}DE\)nên ^DIE là góc vuông => ^DIE = 900
Theo tính chất góc ngoài của tam giác , ta suy ra :
^EAD = ^EAx + ^xAD = 1/2(^EIx + ^xID) = 1/2^EID = 1/2.900 = 450
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Sửa đề: AF=EC
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó;ΔDAF=ΔDEC
=>AF=EC
c: Sửa đề: CM AE//CF
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
d: Sửa đề: I là trung điểm của FC
Ta có: IF=IC
=>I nằm trên đường trung trực của CF(3)
Ta có: DF=DC(ΔDAF=ΔDEC)
=>D nằm trên đường trung trực của CF(4)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(5)
Từ (3),(4),(5) suy ra B,D,I thẳng hàng
Nhớ là tính DE theo m