K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

a) xét tam giác ABH và tam giác ACH có

Góc AHB =Góc AHC =90 độ 

AB =AC ( do tam giác abc cân) 

Góc B = góc C (do tam giác abc cân) 

=> tam giác ABH = tam giác ACH ( cạnh huyền, góc nhọn) 

=>HB= HC (hai cạnh tương ứng bằng nhau) 

b) Xét tam giác MAK và tam giác MCK có

AK=KH( gì) 

Góc AKB = GÓC CKB=90 độ

MK chung

=>tam giác MAK = tam giác MCK( c. g. c) 

=> MA=CM( hai cạnh tương ứng) 

c) từ tam giác mak = tam giác MCK ( câu b) 

=>góc MAK = góc C (..)

TA CÓ tam giác abc cân ở A =>góc B = góc C 

=>góc Abc = góc Mak

d)  cậu xem lại đề phần này đi nha mik thấy nó sai cái j đó

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.  a) Chứng minh: KE // BC  b) Chứng minh: tam giác DEF đều2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.  a) Chứng minh: BH = AK  b) Chứng minh: tam giác MHK vuông cân.3) Cho tam giác...
Đọc tiếp

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.

  a) Chứng minh: KE // BC

  b) Chứng minh: tam giác DEF đều

2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.

  a) Chứng minh: BH = AK

  b) Chứng minh: tam giác MHK vuông cân.

3) Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Trên tia đối tia MB lấy N sao cho MB = MN. Đường thẳng qua B // AC cắt NC ở P. Vẽ phân giác BD của góc ABM. Qua D kẻ đường thẳng BM cắt BM ở H và cắt CP ở K.

  a) Chứng minh: CN = CA

  b) Chứng minh tam giác BPC vuông cân

c) Chứng minh: KH = KP

  d) Tính góc DBK

  e) Biết BC = 8cm. Tính chu vi tam giác DKC

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

18 tháng 2 2020

Ta có : Tam giác ABM cân tại B

=>MAB^=AMB^ (1)

Lại có : IMB^=IAB^=90* (2)

Từ 1 và 2 : +)IAM^=90*-MAB^

                  +)IMA^ =90*-AMB^

                  =>IAM^=IMA^

=>Tam giác IAM cân tại I

=>IA=iM

18 tháng 2 2020

A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT) 
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o 
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
  BI chung
  BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)

b) Ta có : ∠BAC + ∠NAC = 180(2 góc kề bù)
    Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180
=> ∠NAC = 180- 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90(ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I(Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
      MC + BM = BC 
     BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.