K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

a, Vì △ABC cân tại A => AB = AC

Xét △ABD vuông tại D và △ACE vuông tại E

Có: BAC là góc chung

       AB = AC (cmt)

=> △ABD = △ACE (ch-gn)

c, Ta có: AE + BE = AB và AD + DC = AC

Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE) 

=> BE = DC

Xét △HEB vuông tại E và △HDC vuông tại D

Có: BE = DC (cmt)

       EBH = DCH (△ABD = △ACE)

=> △HEB = △HDC (cgv-gnk)

=> BH = HC (2 cạnh tương ứng)

=> △BHC cân tại H

c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2 

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2

=> AED = ABC 

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

d, Xét △BAH và △CAH

Có: AB = AC (cmt)

    ABH = ACH (cmt)

    AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BAH = CAH (2 góc tương ứng)

Xét △ABK và △ACK

Có: AB = AC (cmt)

    BAK = CAK (cmt)

   AK là cạnh chung

=> △ABK = △ACK (c.g.c)

=> BK = CK (2 cạnh tương ứng)

Xét △BHK và CMK

Có: HK = MK (gt)

     HKB = MKC (2 góc đối đỉnh)

        BK = CK (cmt)

=> △BHK = △CMK (c.g.c)

=> HBK = MCK (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong 

=> BH // MC (dhnb)

=> BD // MC (H \in  BD)

Mà BD ⊥ AC (gt)

=> MC ⊥ AC (từ vuông góc song song)

=> ACM = 90o

=> △ACM vuông tại C

28 tháng 3 2020

1 cách khác cho câu d

d, làm giống đoạn đầu cho đến HBK = MCK (2 góc tương ứng) => DBC = BCM

Xét △BDC vuông tại D có: DBC + DCB = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> BCM + ACB = 90o  => ACM = 90o => △ACM vuông tại C

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

18 tháng 3 2017

A B C M H D

a) Xét \(\Delta ABM\)\(\Delta HBM\)có:\(\hept{\begin{cases}\widehat{BAM}=\widehat{BHM}=90^0\\BM\\\widehat{ABM}=\widehat{HBM}\end{cases}\Rightarrow\Delta ABM=\Delta HBM}\)(CẠNH HUYỀN GÓC NHỌN)

b)\(\Delta ABM=\Delta HBM\)(câu a)\(\Rightarrow BA=BH\)

Xét \(\Delta BAC\)và \(\Delta BHD\)có:\(\hept{\begin{cases}\widehat{BAC}=\widehat{BHD}=90^0\\BA=BH\\\widehat{B}\end{cases}\Rightarrow\Delta BAC=\Delta BHD\left(g.c.g\right)\Rightarrow AC=HD}\)

c)\(\Delta BAC=\Delta BHD\Rightarrow\hept{\begin{cases}BC=BD\\\widehat{ACB}=\widehat{HDB}\end{cases}}\)

Xét \(\Delta BMC\)và \(\Delta BMD\)có:\(\hept{\begin{cases}\widehat{MBC}=\widehat{MBD}\\BC=BD\\\widehat{BCM}=\widehat{BDM}\end{cases}\Rightarrow\Delta BMC=\Delta BMD\left(g.c.g\right)\Rightarrow MD=MC\Rightarrow\Delta MCD}\)CÂN

d)\(\Delta ABM=\Delta HBM\Rightarrow AM=HM\Rightarrow\Delta AHM\)CÂN\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\frac{180^0-\widehat{AMH}}{2}\left(1\right)\)

\(\Delta MCD\)CÂN\(\Rightarrow\widehat{MDC}=\widehat{MCD}=\frac{180^0-\widehat{DMC}}{2}\left(2\right)\)

Mà \(\widehat{AMH}=\widehat{DMC}\)(Đối đỉnh) \(\left(3\right)\)

Từ (1) ; (2) và (3)\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\widehat{MDC}=\widehat{MCD}\)(So le trong)\(\Rightarrow AH\)// \(CD\)

ỦNG HỘ MIK NHA BN!

12 tháng 6 2018

Bạn tự vẽ hình nha ^^

a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có 

\(AB=EB\left(GT\right)\)(1)

\(\widehat{BAD}=\widehat{BED}=90^o\)(2)

\(BD:\)Cạnh chung (3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )

b) 

---Theo đề bài ta có :

\(AB=EB\left(GT\right)\)(1)

và  \(\widehat{ABC}=60^o\left(gt\right)\)(2)

Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều                   (đpcm)

--- Vì  \(\Delta ABE\)đều

\(\Rightarrow AB=BE=AE\)

Mà \(AB=6cm\)(gt)

...\(AE=EC\)

\(\Rightarrow EC=6cm\)

mà \(BE=6cm\)

Có  \(EC+BE=BC\)

\(\Rightarrow6+6=12cm\)

Vậy BC =12cm

1 tháng 3 2021

thank b

undefined

24 tháng 7 2018

DC làm sao là tia phân giác của ACD được .Bạn có viết nhầm đề bài ko? Nếu sửa lại cho đúng thì mình sẽ giúp bạn.

24 tháng 7 2018

Cho mình sửa lại đề bài :

 Cho tam giác ABC vuông tại A. Kẻ CD là phân giác của góc ACB ( D thuộc AB ). Kẻ AE vuông góc CD tại E, AE cắt BC tại F.

_-_-_-_-_-_-_-_-_-_-_-

Note : thực lòng xin lỗi các bạn và cảm ơn bạn Pham Van Hung đã nhắc nhở tôi.

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa