K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Góc β: Góc giữa B', C, A Góc β: Góc giữa B', C, A Góc γ: Góc giữa B'', C, B' Góc γ: Góc giữa B'', C, B' Góc δ: Góc giữa B, C, E Góc δ: Góc giữa B, C, E Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [C, D] Đoạn thẳng m: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [D, H] Đoạn thẳng r: Đoạn thẳng [E, K] B = (-0.89, 7.08) B = (-0.89, 7.08) B = (-0.89, 7.08) A = (-0.9, 2.2) A = (-0.9, 2.2) A = (-0.9, 2.2) Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i

Kẻ \(DH⊥EC\left(H\in EC\right)\)

Khi đó do \(\widehat{ACD}=\widehat{HCD}\left(gt\right)\Rightarrow\Delta ACD=\Delta HCD\) (Cạnh huyền góc nhọn)

Vậy nên AD = HD (Hai cạnh tương ứng)

Lại thấy HD là đường vuông góc, DE lại là đường xiên nên DH < DE hay AD < DE.

Tương tự, kẻ \(EK⊥BC\left(K\in BC\right)\)

Ta cũng chứng minh được DE = EK < EB.

Vậy thì AD < DE < EB (đpcm).

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song

 

27 tháng 10 2017

câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!

27 tháng 10 2017

câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC

13 tháng 3 2022

A B C D E M

a) Xét \(\Delta ABD\) và \(\Delta AED\) có :

        AB=AE

        \(\widehat{BAD}=\widehat{EAD}\)

         AD  chung

=> \(\Delta ABD\) =​\(\Delta AED\) (c-g-c)

=> DE=DB   ; \(\widehat{ABD}=\widehat{AED}\)

b)Có : \(\widehat{ABD}+\widehat{MBD}=180^o\)

           \(\widehat{AED}+\widehat{DEC}=180^o\)

mà \(\widehat{ABD}=\widehat{AED}\) => \(\widehat{MBD}=\widehat{DEC}\)

Xét \(\Delta MDBvà\Delta CDE\) có :

\(\widehat{MBD}=\widehat{DEC}\)

DE=DB

\(\widehat{MBD}=\widehat{CDE}\)

=> \(\Delta MDB=\Delta CDE\left(g-c-g\right)\)

c) Có : AB=AE ( \(\Delta ABD\) =​\(\Delta AED\) )

            MB=CE(\(\Delta MDB=\Delta CDE\))

=> AB+BM=AE+EC

=> AM=AC

=> \(\Delta MAC\) cân tại A

mà AD là tia phân giác của góc A 

=> AD là đường cao của \(\Delta MAC\)

=> \(AD\perp MC\)

18 tháng 4 2021

a/ Xét tg ABD và tg EBD có:

BD chung

AB = BE (gt)

góc ABD = góc EBD ( BD là pg góc B)

=>  tg ABD = tg EBD (c-g-c)

=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)

mà góc BAD = 90 ( tg ABC vuông tại A)

=> góc BED = 90

=> DE vuông góc BC

 

26 tháng 12 2021

ko bít