Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)
CH=5,4(cm)
2: \(BC=\sqrt{2+2}=2\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)
\(BH=CH=AH=1\left(cm\right)\)
tam giác ABC vuông tại A nên áp dụng định lý Py-ta-go
\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)
\(\Rightarrow AC=5\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow12^2=BH.13\Rightarrow BH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow5^2=BH.13\Rightarrow BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)
Ta có: \(AC=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5\left(cm\right)\)
Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)
Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)
Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)
1: \(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\sqrt{20^2-12^2}=16\left(cm\right)\)
CH=BC-BC=9(cm)
2: \(BC=10cm\)
\(AC=5\sqrt{3}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{10}=2.5\left(cm\right)\)
CH=BC-BH=7,5(cm)
Ta có: BC=BH+CH
nên BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)