Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2:
Kẻ \(DK\perp BH.\)
Mà \(BH\perp AC\left(gt\right)\)
=> \(DK\) // \(AC\) (từ vuông góc đến song song).
Hay \(DK\) // \(HC.\)
=> \(\widehat{KDB}=\widehat{HCD}\) (vì 2 góc đồng vị).
+ Vì \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{HCD}.\)
Mà \(\widehat{KDB}=\widehat{HCD}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{KDB}.\)
Xét 2 \(\Delta\) vuông \(BFD\) và \(DKB\) có:
\(\widehat{BFD}=\widehat{DKB}=90^0\)
Cạnh BD chung
\(\widehat{FBD}=\widehat{KDB}\left(cmt\right)\)
=> \(\Delta BFD=\Delta DKB\) (cạnh huyền - góc nhọn).
=> \(DF=BK\) (2 cạnh tương ứng) (1).
Nối D với H.
+ Vì \(DK\) // \(AC\left(cmt\right)\)
=> \(DK\) // \(EH.\)
=> \(\widehat{KDH}=\widehat{EHD}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) vuông \(DEH\) và \(HKD\) có:
\(\widehat{DEH}=\widehat{HKD}=90^0\)
Cạnh DH chung
\(\widehat{EHD}=\widehat{KDH}\left(cmt\right)\)
=> \(\Delta DEH=\Delta HKD\) (cạnh huyền - góc nhọn).
=> \(DE=HK\) (2 cạnh tương ứng) (2).
Từ (1) và (2) => \(DF+DE=BK+HK.\)
Mà \(BK+HK=BH\)
=> \(DF+DE=BH\left(đpcm\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Cho \(\Delta\)ABC có AB = AC . Lấy điểm D trên cạnh AB , Điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD . Chứng minh rằng \(\Delta\) BOD = \(\Delta\)COE
2) Cho \(\Delta\)ABC vuông tại A. Tia phân giác của góc B cắt AC ở D . Kẻ DE vuông góc với BC . C/m rằng AB = BE