Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔABD=ΔHBD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
góc ADK=góc HDC
=>ΔDAK=ΔDHC
=>DK=DC
=>ΔDKC cân tại D
a: Xét ΔABD vuông tạiA và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: BA=BH
DA=DH
=>BD là trung trực của AH
c: Xét ΔDAK và ΔDHC có
DA=DH
góc ADK=góc HDC
DK=DC
=>ΔDAK=ΔDHC
=>góc DAK=góc DHC=90 độ
=>góc DAK+góc DAB=180 độ
=>B,A,K thẳng hàng
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D
Sửa đề: DH vuông góc với BC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔHBD(cmt)
nên DA=DH(hai cạnh tương ứng)
Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
AK=HC(gt)
Do đó: ΔADK=ΔHDC(hai cạnh góc vuông)
Suy ra: DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔBAD=ΔBHD)
và AK=HC(gt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
TỪ (1) và (2) suy ra BD là đường trung trực của CK
hay BD⊥CK
Xét ΔBKC có
BD là đường cao ứng với cạnh KC(cmt)
CA là đường cao ứng với cạnh BK(gt)
CA cắt BD tại D(gt)
Do đó: D là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)
Suy ra: KD là đường cao ứng với cạnh BC
mà DH là đường cao ứng với cạnh BC(gt)
và KD, DH có điểm chung là D
nên K,D,H thẳng hàng(đpcm)
a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:
BD chung
∠ABD = ∠HBD (BD là phân giác của ∠ABH)
⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)
b) Do ∆ABD = ∆HBD (cmt)
⇒ AB = BH (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AH (1)
Do ∆ABD = ∆HBD (cmt)
⇒ AD = HD (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AH
c) Xét ∆ADK và ∆HDC có:
AD = HD (cmt)
∠ADK = ∠HDC (đối đỉnh)
DK = DC (gt)
⇒ ∆ADK = ∆HDC (c-g-c)
⇒ ∠DAK = ∠DHC (hai góc tương ứng)
⇒ ∠DAK = 90⁰
Mà ∠DAB = 90⁰
⇒ ∠DAK + ∠DAB = 180⁰
⇒ B, A, K thẳng hàng