K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

đặt E thuộc BC sao cho AB=BE

Xét tam giác BAD và tam giác BED

^ABD=^EBD ( gt)

BD-cạnh chung

BA=BE(dựng hình)

=>tam giác BAD = tam giác BED

=>AD=DE(2 cạnh tương ứng)

=> ^BAD=^DEB(2 góc tương ứng)

kẻ tia đối của tia AB là tia Ax.

Ta có : ^xAD +^BAD=180o(kề bù)

           ^DEB+^DEC=180o(kề bù)

           ^BAD=^DEB ( cmt)

=> ^xAD=^DEB

ta có : ^xAD là góc ngoài tại đỉnh A của tam giác ABC

=>^xAD>^C 

=>^DEC>^C

=>DE<DC

mà AD=DE(cmt)

=>AD<DC

10 tháng 5 2020

Cách 2 :

kẻ  DE vuông góc BC tại E

dễ dàng suy ra tam giác ABD= tam giác BED ( ch-gn)

=>AD=DE( 2 cạnh tương ứng)

=>DE<DC ( cạnh huyền là cạnh lớn nhất)

mà AD=DE

=> AD<DC

Ta có: ΔABC cân tại A(gt)

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

\(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

\(\Rightarrow\)BD=CE(hai cạnh tương ứng)

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

Do đó: ΔOAM=ΔOBM

Suy ra: MA=MB

b: Xét ΔOAH vuông tại A và ΔOBK vuông tại B có

OA=OB

\(\widehat{AOH}\) chung

Do đó: ΔOAH=ΔOBK

Suy ra: OH=OK

hay ΔOHK cân tại O

d: Ta có: ΔOHK cân tại O

mà OM là đường phân giác

nên OM là đường trung tuyến ứng với cạnh HK

mà G là trung điểm của HK

nên O,M,G thẳng hàng

16 tháng 8 2016

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

16 tháng 9 2016

chịu 

thông cảm nhé