Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nói tóm tắt thôi nhé!
a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)
b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD
c) Mình chưa nghĩ ra
Câu c là tính HC nhé bạn!
c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm
BH + HC = BC = 10cm
BH = AB = 6cm
=> HC = 10 - 6 = 4 cm
Chúc bạn học tốt!
a) Có góc DBH = góc AHB ( cùng = 90 º do cùng vuông góc BC ) mà 2 góc này ở vị trí so le trong nên BD song song AH.
Lại có BD = AH ( gt ) nên AHBD là hbh , vậy AB song song DH ( theo tính chất hbh )
b) Xét tam giác ABH có góc BAH = 35 º ( gt ) , góc AHB = 90 º do AH vuông góc BC.
Vậy góc ABC = 180º-90º-35º = 55º .
Do đó góc ACB = 180º - góc ABC - góc BAC
= 180º-90º-55º = 35º
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BE
b: Ta có: ΔBAD=ΔBED
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
Bài làm:
a) Xét tam giác ABH và tam giác ACH có:
Góc AHC = góc AHB = 90o
AB = AC
Vì AB = AC => tam giác ABC cân tại A => Góc B = góc C
Vậy tam giác ABH = tam giác ACH (c.huyền - góc nhọn)
=> HB = HC = 8 : 2 = 4 cm
Áp dụng định lí Py Ta go cho tam giác ABH vuông tại H ta có:
HA2 + HB2 = AB2
HA2 = AB2 - HB2
= 52 - 42 = 9
=> AH = \(\sqrt{9}=3cm\)
b) Xét tam giác DBH và tam giác ECH có:
BH = CH (chứng minh ở câu a)
Góc D = góc E = 90o
Góc B = góc C
Vậy tam giác DBH = tam giác ECH (c,huyền - g.nhọn)
=> HD = HE (2 cạnh tương ứng)
=> Tam giác HDE cân (tại H)
c) Vì tam giác DHB vuông tại D nên:
BH là cạnh lớn nhất (c.huyền)
=> BH > DH mà BH = CH
=> CH > DH
d) Vì GH = 1/3AH => G là trọng tâm của tam giác ABC
=> BN là đường trung tuyến
=> NA = NC
e) Ta có: GH = 1/3AH = 1/3 . 3 = 1 cm
Áp dụng định lí Py Ta Go cho tam giác GBH vuông tại H ta có:
HG2 + HB2 = BG2
BG2 = 12 + 42 = 17
=> BG = \(\sqrt{17}cm\)
Ta lại có: BG = 2/3 BN
=> BN = \(\frac{BG}{\frac{2}{3}}=\sqrt{17}.\frac{3}{2}=\frac{3\sqrt{17}}{2}cm\)
C/m 3 điểm thẳng hàng là tìm trọng tâm của tam giác đóa pạn, có trọng tâm ròi =>D,M.F thẳng hàng
a: Xét ΔADE có
AB/BD=AC/CE
nên DE//BC
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
a)Xét \(\Delta BAD\) và\(\Delta BHD\):
Góc BAD = góc BHD = 90 o
Chung cạnh BC
Góc ABD = góc HBD ( BD là phân giác góc ABC)
\(\Rightarrow\Delta BAD=\Delta BHD\) (cạnh huyền - góc nhọn)
\(\Rightarrow BA=BH\) ( 2 cạnh tương ứng)
Vậy BA=BH
b) Vì \(\Delta BAD=\Delta BHD\) (chứng minh trên)
\(\Rightarrow AD=DH\) (2 cạnh tương ứng) (1)
Xét \(\Delta DCH\) có góc DHC = 90 o nên góc DHC là góc lớn nhất trong tam giác đó.
Do đó DC là cạnh lớn nhất trong \(\Delta DCH\) ( quan hệ góc và cạnh đối diện)
\(\Rightarrow DC>DH\) (2)
Từ (1)(2) \(\Rightarrow DA\)\(<\)\(DC\)
Vậy DA<DC