Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Trên tia
BC lấy điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)

mà ˆBAD=900BAD^=900(gt)

nên ˆBED=900BED^=900

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

ˆADM=ˆEDCADM^=EDC^(hai góc đối đỉnh)

Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AM=EC(Hai cạnh tương ứng)

c) Xét ΔBAE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Suy ra: ˆBAE=ˆBEABAE^=BEA^(hai góc ở đáy)

mà ˆBAE+ˆMAE=1800BAE^+MAE^=1800(hai góc kề bù)

và ˆBEA+ˆAEC=1800BEA^+AEC^=1800(hai góc kề bù)

nên ˆAEC=ˆEAM

13 tháng 3 2022

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

12 tháng 3 2022

a) Xét \(\Delta ABD\) và \(\Delta EBD:\)

BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)

\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).

\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)

\(\Rightarrow\widehat{BED}=90^o.\)

\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)

Xét \(\Delta ABE:\)

\(AB=EB\left(cmt\right).\)

\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).

Xét \(\Delta ABE\) cân tại B:

BD là phân giác \(\widehat{B}\left(gt\right).\)

\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).

12 tháng 3 2022

đen thui zị

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

(^-^'')CẦN GIẢI GẤP ĐỐNG BÀI NÀY(Có cả hình ở mỗi bài nha!)Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CEb) Tam giác OEB bằng tam giác ODCc) AO là tia phân giác của góc BACd) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.Câu 2 :Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của...
Đọc tiếp

(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)

Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : 
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.

Câu 2 :

Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E. 
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)

Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh: 

a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.

Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC

4
8 tháng 4 2019

Càng nhanh càng tốt nha :D

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j