Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và EBD có:
- AB=BE (gt)
- góc ABD = góc EBD ( BD là phân giác góc B)
- Chung cạnh BD
=> Tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE ( 2 cạnh tương ứng)
HÌNH BẠN TỰ VẼ NHÉ
Tam giác BAD có góc BAD bằng 90 độ => góc ABD + góc ADB =90 độ
lại có: Góc FAD là góc ngoài của tam giác BAD tại đỉnh A
\(\Rightarrow\)góc FAD = góc ABD + góc ADB
= 90 độ
Mật khác: góc BAF = góc BAD + góc DAF
= 90 độ + 90 độ
= 180 độ
=> B,A,F thẳng hàng
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có
EA=ED
AF=DC
Do đó: ΔAEF=ΔDEC
Suy ra: EF=EC
hay E nằm trên đường trung trực của CF(1)
Ta có: BF=BC
nên B nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BE là đường trung trực của CF
=>BE⊥CF
hay BG⊥CF