Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và EBD có:
- AB=BE (gt)
- góc ABD = góc EBD ( BD là phân giác góc B)
- Chung cạnh BD
=> Tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE ( 2 cạnh tương ứng)
HÌNH BẠN TỰ VẼ NHÉ
Tam giác BAD có góc BAD bằng 90 độ => góc ABD + góc ADB =90 độ
lại có: Góc FAD là góc ngoài của tam giác BAD tại đỉnh A
\(\Rightarrow\)góc FAD = góc ABD + góc ADB
= 90 độ
Mật khác: góc BAF = góc BAD + góc DAF
= 90 độ + 90 độ
= 180 độ
=> B,A,F thẳng hàng
a)
Xét \(\Delta ABD\) và \(\Delta EBD\) có :
BA = BE ( gt )
\(\widehat{ABD}\) = \(\widehat{EBD}\) ( gt )
BD chung
=> \(\Delta ABD\) =\(\Delta EBD\) ( c . g . c )
=> DA = DE
b)
Kéo dài DE cắt AB tại F' .
Ta c/m được : \(\Delta ADF'=\Delta EDC\left(g.c.g\right)\)
=> DF' = DC
Mà DF = DC
=> D trùng với F'
=> A ; B ; F thẳng hàng .
c)
Dễ dàng c/m BF = BC
=> Tam giác BFC cân tại B
Mà AD là tia phân giác
=> AD cũng là đường cao .
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF