Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D
a) Xét tam giác DAB và tam giác DHB:
góc DAB= góc DHB =90o
DB chung
góc DBA= góc DBH
=> tam giác DAB = tam giác DHB (cạnh huyền _góc nhọn)
=> DA=DH (2 cạnh tương ứng)
b)
Ta có: DA = DH (cmt) (1)
và trong tam giác CHD :
DH là cạnh góc vuông
DC là cạnh huyền
=> DH < DC (2)
Từ (1) và (2) => AD < DH
c) Xét tam giác DAK và tam giác DHC:
góc DAK = góc DHC = 90o
DA = DH (cmt)
góc KDA = góc CDH (đối đỉnh)
=> tam giác DAK = tam giác DHC (cạnh góc vuông_ góc nhọn)
=> AK = HC (2 cạnh tương ứng)
Ta có: AB = HB (do tam giác DAB = tam giác DHB)
và AK = HC (cmt)
mà BK = AB + AK
BC = HB + HC
=> BK = BC
=> tam giác KBC cân
Cô nêu cách trình bày khác của câu c nhé. :)
Xét tam giác KBC, có KH, CK là các đường cao nên D là trực tâm của tam giác KBC. Từ đó suy ra BD là đường cao của tam giác KBC. Mà BD lại là đường phân giác nên tam giác KBC cân tại B.
Xét \(\triangle ABD\) vuông tại \(A\) và \(\triangle HBD\) vuông tại H \(( DH \bot BC)\) ta có :
\(\widehat{ABD}=\widehat{HBD}\) ( tia phân giác của \(\widehat{ABC}\) cắt \(AC\) tại \(D\) )
Chung \(BD\)
\(\Rightarrow\) \(\triangle ABD\) \(=\) \(\triangle HBD\) ( ch - gn )
\(\Rightarrow AB = BH\) ( \(2\) cạnh tương ứng ) (1)
Do \(\begin{cases} \widehat{BAD} = 90^o\\ \widehat{BHD} = 90^0\end{cases}\)
\(\Rightarrow \widehat{KAD} = \widehat{CHD} = 90^o\)
Xét \(\triangle AKD\) vuông tại \(A\) và \(\triangle HCD\) vuông tại \(H\) ta có :
\(\widehat{ADK} = \widehat{HDC}\) ( \(2\) góc đối đỉnh )
\(AD=DH \) ( \(\triangle ABD = \) \(\triangle HBD\) )
\(\Rightarrow\) \(\triangle AKD=\) \(\triangle HCD\) ( cgv - gnk )
\(\Rightarrow AK = CH\) ( \(2\) cạnh tương ứng ) (2)
Từ (1) và (2)
\(\Rightarrow AB+AK = BH+CH\)
\(\Leftrightarrow BK=BC\)
\(\Rightarrow \triangle KBC\) cân tại \(B\)