K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

-.- LM XOG LỠ PẤM HỦY T~T

A B C D E M N G 1 2

A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow10^2=6^2+AC^2\)

\(\Rightarrow100=36+AC^2\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)

\(BD\)LÀ CẠNH CHUNG

=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)

=>\(AB=EB\)

=>\(\Delta ABE\)CÂN TẠI B

C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC

=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN

=> AM=ME

VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)

MÀ \(CG=2GM\)

=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN  AN

=> BA ĐIỂM A,G,N THẲNG HÀNG

24 tháng 6 2021

undefined

undefined

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>BA=BE và DA=DE

Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)

=>DA<DC

d: BA=BE

=>B nằm trên đường trung trực của AE(1)

DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD vuông góc với AE tại trung điểm của AE

=>BD\(\perp\)AE tại M và M là trung điểm của AE

CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM

=>\(\dfrac{1}{2}CG+CG=CM\)

=>\(CM=\dfrac{3}{2}CG\)

=>\(CG=\dfrac{2}{3}CM\)

 

Xét ΔEAC có

CM là đường trung tuyến

\(CG=\dfrac{2}{3}CM\)

Do đó: G là trọng tâm của ΔEAC

Xét ΔEAC có

G là trọng tâm

N là trung điểm của EC

Do đó: A,G,N thẳng hàng

31 tháng 3 2018

Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)

Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)

Từ 1 và 2 => ED<FD

31 tháng 3 2018

a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)

​​=> 62+Ac2=10=>AC2=100-36=64=> AC= 8

Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE

b: DA=DE

DE<DC

=>DA<DC