Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a) Tam giác ABD và EBD có:
Góc ABD = EBD (BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
=> Tam giác ABD = EBD (c-g-c) (*)
b) Từ (*) => góc BED = 90 độ (= góc BAD)
=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) => DE = AD (2)
Từ (1) và (2) => DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a/ Xét \(\Delta ABD\)và \(\Delta EBD\)
BA=BE (gt); BD chung
\(\widehat{ABD}=\widehat{EBD}\)(gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/
\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)
c/
Ta có
BE=BA (gt); AF=CE (gt)
=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B
Mà BD là phân giác \(\widehat{ABC}\)
\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Mà \(CA\perp BF\)
=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng
hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác
a) Xét tam giác ABD và tam giác EBD có:
AB=BE (gt)
^ABD=^EBD (^ABD là tia phân giác)
BD chung
=> tam giác ABD = tam giác EBD ( c.g.c )
b) Vì ABC là tam giác vuông tại A
=> tam giác ABD là tam giác vuông tại A
Mà: tam giác ABD = tam giác EBD ( c.g.c )
=> ^BED=^BAD= 90o
=> DE_|_BC (đpcm)
c) Nối F và C lại với nhau
Vì: FA=FB ( gt)
Mà CA_|_FB ( tam giác ABC _|_ tại A)
=> CA là đg trung trực của tam giác ABC
=> CA là đg trung tuyến của tam giác ABC
Mà tia phân giác ABC cắt AC tại D
=> D là trọng tâm của tam giác ABC
=> D,E,F thằng hàng (đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
a: Ta có: ΔBAD vuông tại A
=>BD là cạnh huyền
=>BD>BA
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC tại E
Ta có: ΔBAD=ΔBED
=>DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó: ΔDAF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của FC(1)
Ta có: NF=NC
=>N nằm trên đường trung trực của CF(2)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(3)
Từ (1),(2),(3) suy ra B,D,N thẳng hàng