Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ΔEHC vuông tại H có EH < EC (cạnh huyền là lớn nhất trong tam giác vuông)
mà EH = AE (câu b) nên AE < EC.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác ABE và tam giác HBE có
BAE=BHE(=90 độ)
ABE=HBE(gt)
BE: cạnh chung
=> tam giác ABE = tam giác HBE(ch-gn)
-> EA=EH( 2 cạnh tương ứng)
b, Xét tam giác aek và tam giác hec có
eak=ekc(=90 độ)
EA=EH(cmt)
AEK=HEC( đối đỉnh)
=>tam giác aek = tam giác hec(gcg)
-> EK=EC(2 cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác ABE và tam giác HBE có : BE chung
góc BAE = góc BHE = 90 do ...
góc ABE = góc HBE do BE là phân giác ...
=> tam giác ABE = tam giác HBE (ch - gn)
=> AE = EH
b, xét 2 tam giác vuông EAK và EHC có:
EA=EH(theo câu a)
ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)
=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)
=> EK=EC(2 cạnh tương ứng)
c, ta thấy E là trực tâm của tam giác CKB
=> BE⊥⊥CK
tham khảo
a, xét tam giác ABE và tam giác HBE có : BE chung
góc BAE = góc BHE = 90 do ...
góc ABE = góc HBE do BE là phân giác ...
=> tam giác ABE = tam giác HBE (ch - gn)
=> AE = EH
b, xét 2 tam giác vuông EAK và EHC có:
EA=EH(theo câu a)
ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)
=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)
=> EK=EC(2 cạnh tương ứng)
c, ta thấy E là trực tâm của tam giác CKB
=> BE⊥CK
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>EA=EH
b: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
c: BK=BC
EK=EC
=>BE là trung trực của CK
=>BE vuông góc CK