K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

A B C H D

Theo tính chất của  tia phân giác ta có 

\(\frac{AC}{AB}=\frac{DC}{DB}=\frac{68}{51}=\frac{4}{3}\Rightarrow AC=\frac{4}{3}AB\)

Lại có  \(AB^2+AC^2=BC^2=\left(68+51\right)^2=119^2=14161\)

\(\Rightarrow\left(\frac{4}{3}AB\right)^2+AB^2=14161\Rightarrow\frac{25}{9}AB^2=14161\Rightarrow AB=71,4\left(cm\right)\)

\(\Rightarrow AC=\frac{4}{3}.71,4=95,2\left(cm\right)\)

Ta có \(AB.AC=BC.AH\Rightarrow AH=\frac{AB.AC}{CB}=57,12\left(cm\right)\)

Xét \(\Delta AHC\)có \(HC=\sqrt{AC^2-AH^2}=\sqrt{5800}=76,16\left(cm\right)\)

\(\Rightarrow HB=BC-HC=119-76,16=42,84\left(cm\right)\) 

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}HC\)

Ta có: \(HB+HC=BC\)

\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)

\(\Leftrightarrow HC=22.4\left(cm\right)\)

\(\Leftrightarrow HB=12.6\left(cm\right)\)

Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)

15 tháng 9 2016

A C H D 24 cm B

có:  HC . HB = AH2 = 576  trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)

mà HC - HB = 14  => HC = 14 + HB

thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB  = 576  

=> HB2 + 14HB - 576 = 0  => (HB - 18) (HB + 32) = 0    => HB = 18 cm

=> HC = 14 + 18 = 32 cm    => BC = 18 + 32 = 50

=> AB2 = BH . BC = 18 . 50 = 900    => AB = 30  cm

=> AC2 = CH . BC = 32 . 50 = 1600  => AC = 40 cm

Có: BD/DC = AB/AC  => BD/AB = DC/AC  và BD + DC = 50

áp dụng tính chất dãy tỉ số bằng nhau đc:

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)

  • => BD = 5 . AB = 5 . 30 : 7 = 150/7 cm

=> CD = 50 - 150/7 = 200/7 cm

=> HD = 50 - CD  - BH = 50 - 200/7 - 18 = 24/7 cm

xét tam giác vuông ADH: 

AD2 = AH+ DH2 = 242 + (24/7)2 

  • => AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cm
15 tháng 9 2016

Ta có: HB.HC=AH^2=24^2=576. 
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC 
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500 
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC) 
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu) 
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC: 
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7 
=>HD=BD-HB=150/7-18=24/7. 
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có: 
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49 
=>AD=căn(28800/49) sấp sỉ 24,244. 
 

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Hình vẽ:

3 tháng 9 2015

bạn bấm vào chữ'' đúng 0'' sẽ hiện ra đáp ánolm-logo.png

30 tháng 10 2019

Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath

10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11

15 tháng 10 2021

Ta có \(BC=BD+CD=35\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)

Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)

DB/DC=AB/DC

DB+DC=BC

=>DB=5-20=-15 là sai đề rồi bạn

BC>DC là sai đề rồi bạn