Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAEH = 900 (vì là hai góc kề bù). (1)
ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAFH = 900 (vì là hai góc kề bù).(2)
ÐEAF = 900 ( Vì tam giác ABC vuông tại A) (3)
Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)
a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AEHF có góc A=gócE=góc F=90°
suy ra AEHF là hcn.
b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)
ta lại có: góc AHE=ABH(cùng bù với BAH) (2)
từ 1 và 2 suy ra góc AFE=ABH
mà góc CFE+AFE=180°
suy ra góc CFE+ABH=180°
suy ra BEFC nội tiếp
c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC
gọi O là giao điểm AH và EF
vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O
suy ra góc OFH=OHF
vì CFH vuông tại F suy ra KC=KF=KH
suy ra tam giác HKF cân tại K
suy ra góc KFH=KHF
mà góc KHF+FHA=90°
suy ra góc KFH+HFO=90°
suy ra EF là tiếp tuyến của đtròn tâm K
tương tự EF là tiếp tuyến đường tròn tâm I
vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC
![](https://rs.olm.vn/images/avt/0.png?1311)
Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!
Chúc bạn học thật tốt!:))
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: AM là đường phân giác trong của tg ABC
H M A B C
Giải: Kẻ AH _l_ BC
Áp dụng pytago vào tam giác ABC vuông tại A có: \(BC=\sqrt{AB^2+AC^2}=10\) (cm)
Theo t/c của đường p/g trong tam giác có:
\(\dfrac{BM}{AB}=\dfrac{MC}{AC}=\dfrac{BM+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{10}{14}=\dfrac{5}{7}\)
=> \(BM=\dfrac{5}{7}\cdot AB=\dfrac{5}{7}\cdot6=\dfrac{30}{7}\left(cm\right)\)
Ta có: \(\sin\left(\widehat{B}\right)=\dfrac{AC}{BC}=\dfrac{8}{10}\Rightarrow\widehat{B}=53^o7'48,37"\)
=> \(S_{ABM}=\dfrac{1}{2}\cdot BM\cdot AB\cdot\sin\left(\widehat{B}\right)\approx10,28571434\left(cm^2\right)\)
Có: Góc ABM = 90o : 2 = 45o
Lại có: \(\dfrac{1}{2}\cdot AB\cdot AM\cdot\sin\left(\widehat{BAM}\right)=S_{ABM}\)
=> \(AM=S_{ABM}:\left(\dfrac{1}{2}\cdot AB\cdot\sin\left(\widehat{BAM}\right)\right)=4,848732241\)
Vậy..............
chắc lúc gửi câu hỏi click chuột nhiều lần nên mới vậy thôi bạn, chứ làm j có ai rảnh mà post lắm thế '-'
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Xét ΔABC vuông tại A có AM là đường phân giác
nên \(AM=\dfrac{2\cdot AB\cdot AC\cdot\cos\left(\dfrac{A}{2}\right)}{AB+AC}=\dfrac{2\cdot6\cdot8\cdot\dfrac{\sqrt{2}}{2}}{6+8}=\dfrac{24\sqrt{2}}{7}\left(cm\right)\)
đây nha