Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta\)ABC có DE //BC
=> \(\frac{AD}{AB}=\frac{AE}{AC}\)( ta lét)
=> \(\frac{AC}{AB}=\frac{AE}{AD}=\frac{AC-EC}{AD}=\frac{AC-AD}{AD}\)( vì AD = CE)
=> \(\frac{AC}{AB}=\frac{AC}{AD}-1\)
Khi đó: \(\frac{10}{6}=\frac{10}{AD}-1\)
<=> \(\frac{10}{AD}=\frac{16}{6}\)
<=> AD= 10.6 : 16 = 3,75

A E B D C F
Theo Talet có : DE //AC => \(\frac{CD}{CB}=\frac{AE}{AB}\)
: DF // AB => \(\frac{BD}{BC}=\frac{AF}{AC}\)
Giả sử EF // BC => \(\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow\frac{CD}{CB}=\frac{BD}{BC}\)
=> CD = BD
=> D là trung điểm của BC

b, ta có
goc BDF + goc FDE + gocEDA=180
goc BFD + goc DFE+goc EFC=180
mà goc BDF=goc EFD (chứng minh trên: cmt)
goc FDE= goc DBF (cmt)
=> goc EDA= goc EFC
Xét tam giác ADE và tam giác EFC có
EF=AD(cmt))
góc EDA = EFC ( cmt)
góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)
=> tam giác ADE = tam giác EFC ( dpcm)
c, Vi tam giác ADE= tam giác EFC
=> AE=EC( 2 cạnh tương ứng)
còn phần a nữa

a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).