K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Ta có IM Vuông góc với AB ( vì I đối xứn với M qua AB)

Mà D là giao điểm của AB và MI

=> MD vuông góc với AB hay góc ADM = 90°

Ta có AC vuông góc với MK( vìk đối xứng với M qua AC)

Mà E là giao điểm của AC và MK

=> Góc AEM =90°

Tứ giác ADMK có 

Góc A= Góc D =góc E = 90°

=> ADMK là hình chữ nhật

B) ta có D là trung điểm AB

M là trung điểm BC

=> DM là đường trung bình của ∆ ABC

=> DM = 1/2 AC

Ta có DM = AE ( ADMK là hình chữ nhật)

=> AE = 1/2 AC 

=> E là trung điểm AC 

Tứ giác AMCK có

EA= EC ( E là trung điểm AC)

EK= EM( k đối xứng với M qua AC , E là giao điểm(

=> AMCK là hình bình hành

Và có AC vuông góc với MK tại E 

=> AMCK là hình thoi

( Cũng có thể chứng minh như sau ta có ∆ ABC là ∆ vuông có AM là trung tuyến 

Nên AM = MC = 1/2 B C nên AMCK là hình thoi)

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

28 tháng 11 2021
Công chúa thủy tế
26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

25 tháng 12 2021

Tứ giác AEDF là hình chữ nhậtundefined

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (cmt)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (cmt)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau)

 

17 tháng 12 2022

a: M đối xứng với H qua AB

nên MH vuông góc với AB tại trung điểm của MH

=>E là trung điểm của MH; AM=AH; BM=BH

mà MA=MB

nene MA=MB=BH=HA

M đối xứng với K qua AC

nên MK vuông góc với AC tại trung điểm của MK

=>F là trung điểm của MK; AM=AK; CM=CK

mà CM=MA

nên CK=CM=MA=AK

=>AMCK là hình thoi

=>AC là phân giác của góc KAM(1)

Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: Xét tứ giác AMBH có

MA=MB=BH=HA

nên AMBH là hình thoi

=>AB là phân giác của góc MAH(2)

c: Từ (1), (2) suy ra góc HAK=2*90=180 độ

=>H,A,K thẳng hàng

mà AH=AK

nên A la trung điểm của HK