K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) Vì MC là đường kính (O) mà \(N\in\left(O\right)\)

\(\Rightarrow\widehat{MNC}=90^o\).Lại có \(\widehat{BAC}=90^o\)

=> B,A,N,C cùng thuộc 1 đường tròn

=> Tứ giác BANC nội tiếp

25 tháng 5 2018

A B C M N D K E O

a) Ta thấy: Tứ giác AMDN nội tiếp đường tròn: ^AND + ^AMD = 1800

Mà ^AMD + ^BMD = 1800 nên ^AND=^BMD hay ^CND=^BMD

Tứ giác ABDC nội tiếp đường tròn (O) => ^ABD +  ^ACD = 1800. Mà ^ACD+^NCD=1800

Nên ^ABD=^NCD hay ^MBD=^NCD

Xét \(\Delta\)MBD và \(\Delta\)NCD: ^BMD=^CND; BM=CN; ^MBD=^NCD => \(\Delta\)MBD=\(\Delta\)NCD  (g.c.g)

=> BD=CD (2 cạnh tương ứng) => D là điểm chính giữa của cung BC

Mà cung BC cố định => D là 1 điểm cố định (đpcm). 

b) Xét đường tròn (O) có dây cung BC ; \(\Delta\)ABC đều nội tiếp (O); D là điểm chính giữa cung BC

=> 3 điểm A;O;D thẳng hàng => ^ABD=^ACD=900 hay ^MBD=900

Do \(\Delta\)BDC cân đỉnh D => ^DBC= (180- ^CBD)/2 (1)

\(\Delta\)MBD=\(\Delta\)NCD (cmt) => ^BDM=^CDN => ^BDM+^MDC=^CDN+^MDC => ^BDC=^MDN (2)

Ta cũng có: MD=ND => \(\Delta\)MDN cân tại D => ^DMN= (180- ^MDN)/2 (3)

Từ (1);(2) và (3) => ^DBC=^DMN hay ^DBK=^DMK => Tứ giác BMKD nội tiếp đường tròn.

=> ^MBD+^MKD=1800. Mà ^MBD=900 => ^MKD=900 => DK vuông góc MN (đpcm).

c) Xét TH điểm M trùng với điểm B. Khi đó điểm N sẽ trùng với điểm C (Do BM=CN)

=> SAMN = SABC (*)

Xét TH điểm M khoog trùng điểm B

Qua điểm M kẻ 1 đường thẳng song song với AC cắt BC tại E.

Vì \(\Delta\)ABC đều => \(\Delta\)MBE là tam giác đều => BM=EM.

Lại có: BM=CN => EM=CN

Xét \(\Delta\)MEK và \(\Delta\)NCK: ^EMK=^CNK; ^MEK=^NCK (So le trong); EM=CN

=> \(\Delta\)MEK=\(\Delta\)NCK (g.c.g) => SMEK = SNCK 

=> SAMN = SAMKC + SNCK = SAMKC + SMEK = SAMEC.

Mà SAMEC < SABC => SAMN < SABC (**)

Từ (*) và (**) => SAMN \(\le\)SABC => Max SAMN = SABC 

Dấu "=" xảy ra khi điểm M trùng với điểm B.

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
5 tháng 10 2019

a, Học sinh tự chứng minh

b, Học sinh tự chứng minh

c, Học sinh tự chứng minh

d, Chú ý:  B I A ^ = B M A ^ , B M C ^ = B K C ^

=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp  DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC

Dấu "=" xảy ra <=>  B I C ^ = 90 0 => I ≡ A => MA