K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Ta có: BI\(\perp\)AD

CK\(\perp\)AD

Do đó: BI//CK

Xét ΔBIA vuông tại I và ΔCKD vuông tại K có

BA=CD

\(\widehat{BAI}=\widehat{CDK}\)(ΔMAB=ΔMDC)

Do đó: ΔBIA=ΔCKD

=>AI=KD

c: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB\(\perp\)AC

Do đó: DC\(\perp\)AC

=>\(\widehat{ACD}=90^0\)

Xét ΔBAC vuông tại A và ΔDCA vuông tại C có

BA=DC

AC chung

Do đó: ΔBAC=ΔDCA

=>BC=AD

7 tháng 12 2018

MÌNH ĐANG CẦN GẤP GIÚP VỚI 

7 tháng 12 2018

A C B M D 1 1 H K H

a) Xét ▲AMC và ▲ DMC có :

AM = MD ( gt )

\(\widehat{M}\)chung 
AB = CD ( hình vẽ )

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Vì \(\widehat{B_1}=\widehat{C_1}\) mà 2 góc này ở vị trí so le trong của cạnh BC 

=> AC // BD 
c) Vì HK = HM + MK 

=> M là trung điểm của HK

Câu c) không đúng đâu UwU  Cái đoạn gạch gạch mình vẽ sai không sửa được bạn vẽ hình đừng vẽ theo :v 

21 tháng 12 2015

Đa số những người hỏi câu hỏi về hình học đều muốn mọi người vẽ hình hộ

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

a: Xét tứ giác AEDB có

M là trung điểm chung của AD và EB

=>AEDB là hbh

=>AE=BD

b: Xét ΔABC có góc ACB<góc ABC

nên AB<AC

Xét ΔABC có

AB<AC

BD,CD lần lượt là hình chiếu của AB,AC trên BC

=>BD<CD

c: Xét tứ giác AFDC có

M là trung điểm chung của AD và FC

=>AFDC là hbh

=>AF//DC

=>AF//BC

mà AE//BC

nên F,A,E thẳng hàng

a: Xét tứ giác AEDB có

M là trung điểm chung của AD và EB

=>AEDB là hìnhbình hành

=>AE=BD

b: góc ACB<góc ABC

=>AB<AC

=>DB<DC

c: Xét tứ giác AFDC có

M là trung điểm chung của AD và FC

=>AFDC là hình bình hành

=>AF//DC

=>F,A,E thẳng hàng

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

20 tháng 8 2016

Bạn hãy chứng minh M là trực tâm của tam giác BDN .