Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Ta có: BI\(\perp\)AD
CK\(\perp\)AD
Do đó: BI//CK
Xét ΔBIA vuông tại I và ΔCKD vuông tại K có
BA=CD
\(\widehat{BAI}=\widehat{CDK}\)(ΔMAB=ΔMDC)
Do đó: ΔBIA=ΔCKD
=>AI=KD
c: Ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Ta có: AB//DC
AB\(\perp\)AC
Do đó: DC\(\perp\)AC
=>\(\widehat{ACD}=90^0\)
Xét ΔBAC vuông tại A và ΔDCA vuông tại C có
BA=DC
AC chung
Do đó: ΔBAC=ΔDCA
=>BC=AD
a) Xét ▲AMC và ▲ DMC có :
AM = MD ( gt )
\(\widehat{M}\)chung
AB = CD ( hình vẽ )
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Vì \(\widehat{B_1}=\widehat{C_1}\) mà 2 góc này ở vị trí so le trong của cạnh BC
=> AC // BD
c) Vì HK = HM + MK
=> M là trung điểm của HK
Câu c) không đúng đâu UwU Cái đoạn gạch gạch mình vẽ sai không sửa được bạn vẽ hình đừng vẽ theo :v
Đa số những người hỏi câu hỏi về hình học đều muốn mọi người vẽ hình hộ
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)
Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)
c) Ta có: ΔHBD=ΔKCE(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
a: \(\widehat{ACB}=43^0\)
vt giải thik luôn dc k ạ