K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

18 tháng 11 2015

tick cho mình rồi mình giải cho

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ΔHDB vuông tại D

mà DI là đường trung tuyến

nên \(DI=IH=IB\)

Xét ΔIHD có IH=ID

nên ΔIHD cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)

nên \(\widehat{IDH}=\widehat{HCA}\)

ADHE là hình chữ nhật

=>\(\widehat{EAH}=\widehat{EDH}\)

=>\(\widehat{EDH}=\widehat{HAC}\)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{HAC}+\widehat{HCA}\)

\(=90^0\)

=>DI\(\)\(\perp\)DE

c: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên EK=KH=KC

Xét ΔKEH có KE=KH

nên ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)

ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

=>\(\widehat{HED}=\widehat{HAB}\)

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KE\(\perp\)DE

Ta có: KE\(\perp\)DE

ID\(\perp\)KE

Do đó: ID//KE

Xét tứ giác KEDI có

KE//DI

KE\(\perp\)ED

Do đó: KEDI là hình thang vuông

d: DI=1cm

mà HB=2DI

nên HB=2*1=2=2cm

EK=4cm

mà CH=2EK

nên \(CH=2\cdot4=8cm\)

BC=BH+CH

=2+8

=10cm

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)

7 tháng 11 2019

a) ta có : tam giác ABC vuông tại A

=> BAC = 90 độ (1)

 có : MD vuông góc AB

=> MDA = 90 độ (2)

Ta có : ME vuông góc AC

=> MEA = 90 độ (3)

Từ (1)(2)(3) => ADME là hình chữ nhật

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB

MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

\(\widehat{MAC}+\widehat{AED}=\widehat{ACB}+\widehat{ABC}=90^0\)

=>AM vuông góc DE