K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

B A C E M D

1)  Xét tam giác EAC và tam gáic EDB có:

\(\widehat{EDB}=\widehat{EAC}=90^0\) ( \(CD\perp BD\)

\(\widehat{BEC}\) chung

do đó  \(\Delta EAC\infty\Delta EDB\) ( g.g)

\(\Rightarrow\frac{EA}{EC}=\frac{ED}{EB}\)( 2 cạnh tương ứng)

\(\Rightarrow EA.EB=ED.EC\)

a: Xét (O) có 

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔACB vuông tại C có 

\(\sin\widehat{CBA}=\dfrac{CA}{AB}=\dfrac{1}{2}\)

=>CA=R

hay \(CB=R\sqrt{3}\)

b: Xét ΔMAB vuông tại A có AC là đường cao

nên \(BC\cdot MC=AC^2\left(1\right)\)

Xét ΔACB vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot BC=AH\cdot AB\)