K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

https://tranvantoancv.violet.vn/present/show/entry_id/11065326

1: Xét ΔEAC vuông tạiA và ΔEDB vuông tại D có

góc E chung
Do đó: ΔEAC\(\sim\)ΔEDB

Suy ra: EA/ED=EC/EB

hay EA/EC=ED/EB

Xét ΔEAD và ΔECB có

EA/EC=ED/EB

góc AED chung

Do đó: ΔEAD\(\sim\)ΔECB

Suy ra: \(\widehat{EAD}=\widehat{ECB}\)

2: Xét ΔCEB có

CAlà đường cao

BD là đường cao

CA cắt BD tại M

Do đó: EM\(\perp\)BC

10 tháng 3 2020

A B C E D H M

a) Xét tam giác EDB và tam giác EAC có:

\(\hept{\begin{cases}\widehat{E}chung\\\widehat{EAC}=\widehat{EDB}=90^0\end{cases}\Rightarrow\Delta EDB~EAC\left(g.g\right)}\)

\(\Rightarrow\frac{ED}{EB}=\frac{EA}{EC}\)( các cạnh tương ứng tỉ lệ )

\(\Rightarrow\frac{ED}{EA}=\frac{EB}{EC}\)

Xét tam giác EDA và EBC có:

\(\hept{\begin{cases}\widehat{E}chung\\\frac{ED}{EA}=\frac{EB}{EC}\left(cmt\right)\end{cases}\Rightarrow\Delta EDA~\Delta EBC\left(g.g\right)}\)

\(\Rightarrow\widehat{EDA}=\widehat{EBC}\)

b) Kẻ \(MH\perp BC\)\(\left(H\in BC\right)\)

Xét tam giác BMH và tam giác BCD có:

\(\hept{\begin{cases}\widehat{DBC}chung\\\widehat{BHM}=\widehat{BDC}=90^0\end{cases}\Rightarrow\Delta BMH~\Delta BCD\left(g.g\right)}\)

\(\Rightarrow\frac{BM}{BH}=\frac{BC}{BD}\)( các cạnh t.ứng tỉ lệ )

\(\Rightarrow BM.BD=BH.BC\left(1\right)\)

Xét tam giác CMH và tam giác CBA có:

\(\hept{\begin{cases}\widehat{BCA}chung\\\widehat{CHM}=\widehat{CAB}=90^0\end{cases}\Rightarrow\Delta CMH~\Delta CBA\left(g.g\right)}\)

\(\Rightarrow\frac{CM}{CH}=\frac{CB}{CA}\)( các cạnh t.ứng tỉ lệ )

\(\Rightarrow CM.CA=CH.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM.BD+CM.CA=BC.BH+BC.CH\)

\(\Rightarrow BM.BD+CM.CA=BC.\left(BH+HC\right)\)

\(\Rightarrow BM.BD+CM.CA=BC^2\)không đổi

Vậy khi M di chuyển trên AC thì tổng \(BM.BD+CM.CA\)có giá trị không đổi 

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDCb/ Chứng minh rằng BI.BA=BM.BCc/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm Md/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)Mình đã lm đc câu a vs câu c ntn:a/...
Đọc tiếp

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.

a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDC

b/ Chứng minh rằng BI.BA=BM.BC

c/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm M

d/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)

Mình đã lm đc câu a vs câu c ntn:

a/ Vì \(Mx\perp BC\)tại M (gt)

\(\Rightarrow\) \(DM\perp BC\)tại M ( \(D\in Mx\) )

\(\Rightarrow\) \(\widehat{DMC}=90^o\) ( tính chất )

\(\Rightarrow\) Tam giác MDC vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MDC vuông tại M có:

\(\widehat{C}\)chung

Vậy tam giác ABC ~ tam giác MDC ( 1 góc nhọn )

 

b/ Vì \(\widehat{DMC}=90^o\) ( chứng minh trong câu a )

\(\Rightarrow\)\(\widehat{DMB}=90^o\) ( 2 góc kề bù )

hay \(\widehat{IMB}=90^o\) ( \(I\in MD\))

\(\Rightarrow\)Tam giác MBI vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MBI vuông tại M có:

\(\Rightarrow\widehat{ABC}\left(\widehat{MBI}\right)\)chuing

Vậy tam giác ABC ~ tam giác MBI ( góc nhọn )

\(\Rightarrow\frac{BA}{BM}=\frac{BC}{BI}\)( 2 cặp cạnh tương ứng )

\(\Leftrightarrow BI.BA=BM.BC\)

 

Đó là những gì mình lm đc nên các bn giúp mk câu c vs d nhé !!!

0
19 tháng 3 2019

a) * Chứng minh EA.EB = ED.EC

- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)

- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC

* Chứng minh góc EAD = góc ECB

- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)

- Suy ra góc EAD = góc ECB

b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o

- Xét Δ EDB vuông tại D có góc B = 30o

→ ED = 1/2 EB

- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2

c) - Chứng minh BMI đồng dạng với Δ BCD (gg)

- Chứng minh CM.CA = CI.BC

- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi

Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2 

d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)

→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC

- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)

→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P