Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
Ta có : Đường trung tuyến ứng với cạnh huyền tam giác vuông thì bằng 1/2 cạnh huyền
Mà Ta có \(AM=\frac{1}{2}BC\)
BC là cạnh huyền tam giác vuông ABC
=> AM là đường trung tuyến tam giác ABC
=>AM=MB=MC
Mà : MA=MB
=> tam giác AMB là tam giác cân tại M
Ta có
MN là đường trung tuyến trong tam giác cân AMB (AN=NB)
=> MN cũng là đường cao
=> MN vuông góc AB
mà AC cũng vuông góc AB
=>MN//AC
=> MNCA là hình thang
mà: góc MNA= góc NAC = 90 độ
=> MNAC là hình thang vuông
XONG !!!!
T I C K nha cảm ơn
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.
a, Tam giác ABC vuông tại A có AM=BC/2 (M thuộc BC) => AM là trung tuyến ứng với cạnh huyền BC
=> AM=MB=MC
=> Tam giác AMB cân tại M
b, M là TĐ BC, N là TĐ AB
=> MN là đường TB của tam giác ABC
=> MN //AC
=> MNAC là hình thang
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a,ta có:tam giác ABC vuông tại A(gt)
mà AM=BC(gt)
suy ra M là trung điểm của BC
suy ra BM=CM=AM=BC
=>tam giác AMC cân tại A
b,ta có:tam giác AMB cân tại M
mà MN là trung tuyến của tam giác AMB nên
Mn cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
mà AC vuông góc với AB(tam giác ABC vuông tại A)
nên MN//AC
=> MNAC là hình thang
ta lại có góc BAC=90 độ
vậy MNAC là hình thanh vuông
--------------------------------------học tốt-------------------------------
cần vẽ hình vẽ cho
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Bài 2:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔABC có
MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)
hay MN=6(cm)