Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
1. a) Vì tam giác ABC cân tại A =>B=ACD Mà ACD=ECN(đối đỉnh) =>B=ECN Vì AB=AC(tam giác ABC cân tại A) Mà AC=IC =>AB=IC Xét tam giác ABD và tam giác ICE có: AB=IC(c/m trên) B=ECN(c/m trên) BD=CE(gt) =>tam giác ABD=tam giác ICE(c.g.c) 2. Xét tam giác BMD và tam giác CEN có: BDM=CNE(=90 độ) BD=CE(gt) B=ECN(c/m trên) =>tam giác BDM=tam giác CEN(g.c.g) =>BM=CN(2 cạnh tương ứng)
Bạn kham khảo link này nhé.
Có câu a và b à
Câu hỏi của Minh Anh - Toán lớp 7 - Học toán với OnlineMath
D A C E K M B 1 2 1 2 3 4 1 2 1 2
Xét 2 tam giác ABM và ADM có
AB = AD
BM = DM => tam giác ABM = tam giác ADM (c.c.c)
Cạnh AM chung
=> A1 = A2
B1 = D1
M1 = M2
Vì M1 kề bù với M2
=> M1 + M2 = 180
=>2 M1 = 180
=> M1 = 90
=< M2 = 90
Vì M1 kề bù vs M4
M2 kề bù vs M3
=> M1 + M4 = M2 + M3 = 180
Mà M1 = M2 = 90
=> M4 = 180 - 90 = 90
M3 = 180 - 90 = 90
=> M3 = M4
Xét 2 tam giác KMD và KMB có :
M3 = M4
BM = DM => tam giác KMD = tam giác KMB (c.g.c)
MK là cạnh chung
=> BK = DK
Xét 2 tam giác ABK và ADK có :
AB = AD
BK = DK => tam giác ABK = ADK (c.c.c)
AK là cạnh chung
b) Đợi tý , tớ suy nghĩ đã
theo tớ , đề câu a phải là :
AM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
a) AC = ?
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:
AC2 = AB2 + BC2
= 52 + 122 = 25 + 144 = 169
⇒ AC = 13 (cm)
b) ΔEAD cân
Xét hai tam giác vuông ABE và DBE có:
AB = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)
⇒ EA = ED (hai cạnh tương ứng)
⇒ ΔEAD cân tại E.
c) K là trung điểm của DC.
Ta có: BE = 4, BC = 12
⇒ BE = 1/3 BC
Hay E là trọng tâm của ΔACD.
⇒ AE là đường trung tuyến ứng với cạnh DC
⇒ K là trung điểm của DC.
d) AD < 4EK
Ta có: EA > AB, ED > BD
Mà AD = AB + BD, AE = ED (câu b)
⇒ 2AE > AD
Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA
Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)
ABCDEN
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ
mà góc CDB+ góc ACB=90 độ
suy ra góc DBC =90 độ
suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)
Áp dụng hệ thức lượng vào tam giác DBC ta có:
1/BC^2+1/BD^2=1/AB^2( ĐPCM)
Ủa, sao mỗi mình lớp 2?