K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)

Góc BAD = BCA

⇒ góc BAE = FCB

Xét △BAE và △FCB có:

AB = CF

BAE = FCB

AE = CB

⇒△BAE = △FCB (c.g.c)

⇒EBA = CFB

Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ

⇒ góc EBF = 90 độ ⇒BE vuông góc với BF

23 tháng 7 2016

Ta có: EA = EC

         FB=FC 

=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ 

=> ABC là tam giác vuông cân tại A 

Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1) 

Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2 

                                                                    AE = BC = AB căn2, pitago vào tam giác vuông EDB

=> BE2 = 5AB2 (2)

Từ (1) và (2)suy ra BE=BF

Vậy vuông góc chứng minh BEF =45 độ 

27 tháng 11 2016

Ta có: EA = EC

         FB=FC 

=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ 

=> ABC là tam giác vuông cân tại A 

Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1) 

Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2 

                                                                    AE = BC = AB căn2, pitago vào tam giác vuông EDB

=> BE2 = 5AB2 (2)

Từ (1) và (2)suy ra BE=BF

Vậy vuông góc chứng minh BEF =45 độ 

ss="Apple-interchange-newline">

25 tháng 2 2018

hình :  A B C D 1 2 F 1

25 tháng 2 2018

\(\widehat{A_2}=90^o:2=45^o\)

\(\Rightarrow\widehat{A_2}=\widehat{ACB}=\left(45^o\right)\)

do đó : \(\widehat{EAB}=\widehat{BCF}\)( kề bù với hai góc bằng nhau )

\(\Delta EAB=\Delta BCF\left(c.g.c\right)\)

suy ra : BE = BF và \(\widehat{B_1}=\widehat{F}\)

xét \(\Delta ABF\)vuông tại A có : \(\widehat{ABF}+\widehat{F}=90^o\)

\(\Rightarrow\widehat{ABF}+\widehat{B_1}=90^o\)hay \(\widehat{EBF}=90^o\)

Vậy BE = BF và BE \(\perp\)BF