Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Khi quay tam giác ABC quanh cạnh AC ta được khối nón có chiều cao là AC, bán kính đáy là AB
Đáp án C.
Ta có A M = A B 2 − B C 2 2 = 2 a . Khi quay tam giác quanh trục MA thì ta được hình nón có bán kính r = a , đường cao h = 2 a . Thể tích khối nón là V = 1 3 π r 2 h = 2 3 π a 3 .
Đáp án C
Bán kính đáy hình nón là a, chiều cao hình nón là
h = 10 a 2 - a 2 = 3 a ⇒ V = 1 3 π a 2 . 3 a = πa 3
Đáp án A
Chiều cao khối nón là A H = a 2 2 . Bán kính đáy là R = a 2 2
Thể tích khối nón là V = 1 3 π R 2 h = 1 3 π a 2 2 2 . a 2 2 = a 3 2 π 12
Đáp án C
Thể tích khối nón là: V = 1 3 π . A C 2 . A B = 1 3 π .4 2 .3 = 16 π c m 3 .
Đáp án A
Phương pháp:
Công thức tính thể tích khối nón: V = 1 3 S . h với S là diện tích hình tròn đáy và h là đường cao.
Cách giải:
Gọi A’ đối xứng với A qua BC. Khi quay tam giác quanh trục BC ta sẽ được hai khối nón có đáy là hình tròn tâm H bán kính R và lần lượt có chiều cao là BH và CH.
Ta có:
A C = B C 2 − A B 2 = 4 a 2 − a 2 = a 3
⇒ A H = A B . A C B C = a . a 3 2 a = a 3 2
V = 1 3 π A H 2 . B H + 1 3 π A H 2 . C H = 1 3 . π A H 2 . B C = 1 3 π a 3 2 2 .2 a = π a 3 2
Đáp án A