Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài 1)
a) Trong ∆ cân ABC có AH là trung trực đồng thời là phân giác và trung tuyến
=> BAH = CAH
Xét ∆ ABD và ∆ ACD ta có :
AB = AC (∆ABC cân tại A)
AD chung
BAH = CAH (cmt)
=> ∆ABD = ∆ACD (c.g.c)
=> BD = CD
=> ∆BDC cân tại D
* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )
Mà DH = HG
=> DG < DB
=> DG ko thể = BD và DC
b) Xét ∆ABG và ∆ACG ta có :
AG chung
BAH = CAH (cmt)
AB = AC (cmt)
=> ∆ABG = ∆ACG (c.g.c)(dpcm)
c) Vì AH = 9cm (gt)
Mà AD = 2/3AH
=> AD = 6cm
=> DH = 9 - 6 = 3 cm
Mà AH là trung tuyến BC
=> BH = HC = BC/2 = 4 cm
Áp dụng định lý Py ta go vào ∆ vuông BHD ta có
=> BD = 5 cm
Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có :
BC = 10 cm
b) Xét ∆ vuông ABM và ∆ vuông BMC ta có :
BM chung
ABM = CBM ( BM là phân giác)
=> ∆ABM = ∆BMC ( ch - gn )
c) Vì ∆ABM = ∆BMC (cmt)
=> AM = NM
Xét ∆ vuông APM và ∆ MNC ta có :
AM = NM (cmt)
AMP = NMC ( đối đỉnh)
=> ∆APM = ∆MNC ( cgv - gn )
d) Vì ∆ APM = ∆MNC (cmt)
=> PM = MC
=> ∆MPC cân tại M
Mà K là trung điểm PC
=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC
=> MK vuông góc với PC
=> M; K thẳng hàng
Mà BM là phân giác ABC
=> B ; M thẳng hàng
=> B ; M ; K thẳng hàng
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng